Bone-mass peak in multiparity and reduced risk of bone-fractures in menopause

2001 ◽  
Vol 76 (3) ◽  
pp. 285-291 ◽  
Author(s):  
C Cure-Cure ◽  
P Cure-Ramı́rez ◽  
E Terán ◽  
P López-Jaramillo
Bone ◽  
2006 ◽  
Vol 38 (5) ◽  
pp. S10
Author(s):  
S.R. Mastaglia ◽  
J.M. Deferrari ◽  
M. Seijo ◽  
S. Zeni ◽  
C. Casco ◽  
...  

2006 ◽  
Vol 9 (3) ◽  
pp. 11-13
Author(s):  
T G Vasil'eva ◽  
O G Maksimova ◽  
E A Kochetkova

We investigated 130 healthy children and adolescences, its dates of dual-energy X-ray absorbtiometry, bone metabolism markers. The formation of bone mass peak, bone's mineralization in healthy children is depending on age, anthropometric status, sex, dietary with uneven activity in the different local of skeleton. The level of bone metabolism markers is depending on period of life, with maximal dates in patient's 12-14 yeas old. The level of osteopenic syndrome in healthy children consist 15,39%.


2020 ◽  
Vol 117 (9) ◽  
pp. 4910-4920 ◽  
Author(s):  
Joonho Suh ◽  
Na-Kyung Kim ◽  
Seung-Hoon Lee ◽  
Je-Hyun Eom ◽  
Youngkyun Lee ◽  
...  

Growth and differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related transforming growth factor β (TGF-β) family members, but their biological functions are quite distinct. While MSTN has been widely shown to inhibit muscle growth, GDF11 regulates skeletal patterning and organ development during embryogenesis. Postnatal functions of GDF11, however, remain less clear and controversial. Due to the perinatal lethality ofGdf11null mice, previous studies used recombinant GDF11 protein to prove its postnatal function. However, recombinant GDF11 and MSTN proteins share nearly identical biochemical properties, and most GDF11-binding molecules have also been shown to bind MSTN, generating the possibility that the effects mediated by recombinant GDF11 protein actually reproduce the endogenous functions of MSTN. To clarify the endogenous functions of GDF11, here, we focus on genetic studies and show thatGdf11null mice, despite significantly down-regulatingMstnexpression, exhibit reduced bone mass through impaired osteoblast (OB) and chondrocyte (CH) maturations and increased osteoclastogenesis, while the opposite is observed inMstnnull mice that display enhanced bone mass. Mechanistically,Mstndeletion up-regulatesGdf11expression, which activates bone morphogenetic protein (BMP) signaling pathway to enhance osteogenesis. Also, mice overexpressing follistatin (FST), a MSTN/GDF11 inhibitor, exhibit increased muscle mass accompanied by bone fractures, unlikeMstnnull mice that display increased muscle mass without fractures, indicating that inhibition of GDF11 impairs bone strength. Together, our findings suggest that GDF11 promotes osteogenesis in contrast to MSTN, and these opposing roles of GDF11 and MSTN must be considered to avoid the detrimental effect of GDF11 inhibition when developing MSTN/GDF11 inhibitors for therapeutic purposes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5600 ◽  
Author(s):  
Jean Vacher ◽  
Michael Bruccoleri ◽  
Monica Pata

The maintenance of bone mass is a dynamic process that requires a strict balance between bone formation and resorption. Bone formation is controlled by osteoblasts, while osteoclasts are responsible for resorption of the bone matrix. The opposite functions of these cell types have to be tightly regulated not only during normal bone development, but also during adult life, to maintain serum calcium homeostasis and sustain bone integrity to prevent bone fractures. Disruption of the control of bone synthesis or resorption can lead to an over accumulation of bone tissue in osteopetrosis or conversely to a net depletion of the bone mass in osteoporosis. Moreover, high levels of bone resorption with focal bone formation can cause Paget’s disease. Here, we summarize the steps toward isolation and characterization of the osteopetrosis associated trans-membrane protein 1 (Ostm1) gene and protein, essential for proper osteoclast maturation, and responsible when mutated for the most severe form of osteopetrosis in mice and humans.


2012 ◽  
Vol 24 (4) ◽  
pp. 1519-1519 ◽  
Author(s):  
C. Cure-Cure ◽  
P. Cure

2003 ◽  
Vol 228 (6) ◽  
pp. 683-688 ◽  
Author(s):  
Marlena C. Kruger ◽  
Katherine E. Brown ◽  
Gabrielle Collett ◽  
Lee Layton ◽  
Linda M. Schollum

Maximizing peak bone mass during adolescence may be the key to postponing and perhaps preventing bone fractures due to osteoporosis in later life. One mechanism to maximize peak bone mass is to maximize calcium absorption, and it has been suggested that inulin and oligofructose might be one of the ways of doing so. In this study, fructooligosaccharides with various degrees of polymerization have been compared in terms of impact on calcium absorption, bone density, and excretion of collagen cross-links in the young adult male rat. The various oligosaccharides were oligofructose (DP2-8), inulin (DP>23), and a mixture of 92% inulin and 8% short-chain oligofructose (DP2-8). Measuring ex vivo bone mineral density (BMD) and bone mineral content (BMC) showed that BMD was significantly higher in the group fed inulin (DP>23) in both femurs, whereas BMC was significantly higher in the spine. The excretion of fragments of Type 1 collagen decreased in all groups over the 4 weeks of feeding, but the decrease was most significant in the group fed inulin (DP>23). Several hypotheses have been offered to explain the effect of the fructooligosaccharides on calcium absorption and retention. These include the production of organic acids that would acidify the luminal contents and enhance solubility and hence absorption, or possibly a mechanism via calbindinD9k. This study is unique in that it compares the different fructooligosaccharides in the same model, and it clearly shows that the various fructans do not have the same effect. In our model, inulin (DP>23) had the most significant effect on calcium bioavailability.


2009 ◽  
pp. S7-S11 ◽  
Author(s):  
M Stránský ◽  
L Ryšavá

Osteoporosis is a systemic disease of the skeleton, characterized by reduction of bone mass and concurrent deterioration of bone structure. Consequently, bones are more fragile, and there is increased risk of fractures. The potential for acquisition of maximum bone mass is influenced by a number of factors. Among those are heredity, sex, nutrition, endocrine factors, mechanical influences and some risk factors. The best documented nutrient for metabolism of bone is calcium. Major role in the pathogenesis of osteoporosis have some micro and macro nutrients, prebiotics, alcohol, alternative diets, starvation and anorexia. Meta analysis of 29 randomized trials showed that supplementation with calcium and vitamin D3 reduces risk of bone fractures by 24 % and significantly reduces loss of bone mass. Osteoporosis has multi factor etiology. Osteoporosis is one of diseases which are influenced by nutrition and life style. It is preventable by means of adequate nutrition and sufficient physical activity.


2018 ◽  
Vol 10 (466) ◽  
pp. eaau7137 ◽  
Author(s):  
Julia Luther ◽  
Timur Alexander Yorgan ◽  
Tim Rolvien ◽  
Lorenz Ulsamer ◽  
Till Koehne ◽  
...  

WNT1mutations in humans are associated with a new form of osteogenesis imperfecta and with early-onset osteoporosis, suggesting a key role of WNT1 in bone mass regulation. However, the general mode of action and the therapeutic potential of Wnt1 in clinically relevant situations such as aging remain to be established. Here, we report the high prevalence of heterozygousWNT1mutations in patients with early-onset osteoporosis. We show that inactivation of Wnt1 in osteoblasts causes severe osteoporosis and spontaneous bone fractures in mice. In contrast, conditional Wnt1 expression in osteoblasts promoted rapid bone mass increase in developing young, adult, and aged mice by rapidly increasing osteoblast numbers and function. Contrary to current mechanistic models, loss of Lrp5, the co-receptor thought to transmit extracellular WNT signals during bone mass regulation, did not reduce the bone-anabolic effect of Wnt1, providing direct evidence that Wnt1 function does not require the LRP5 co-receptor. The identification of Wnt1 as a regulator of bone formation and remodeling provides the basis for development of Wnt1-targeting drugs for the treatment of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document