Arbidol targeting influenza virus A Hemagglutinin; A comparative study

2021 ◽  
pp. 106663
Author(s):  
Alhassan Ali Ahmed ◽  
Mohamed Abouzid
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea Laconi ◽  
Andrea Fortin ◽  
Giulia Bedendo ◽  
Akihiro Shibata ◽  
Yoshihiro Sakoda ◽  
...  

2021 ◽  
Vol 24 (6) ◽  
pp. 30-33
Author(s):  
S.P. Yatsentyuk ◽  
◽  
M.S. Krasnikova ◽  
M.B. Bryusova ◽  

2019 ◽  
Vol 64 (2) ◽  
pp. 73-78
Author(s):  
T. A. Timofeeva ◽  
I. A. Rudneva ◽  
A. A. Shilov ◽  
M. A. Balanova ◽  
E. K. Artemov ◽  
...  

Introduction. After the emergence and spread of pandemic H1N1 viruses in 2009, antigenic epitopes recognized by neutralizing antibodies against the hemagglutinin of influenza A/Moscow/01/09(H1N1)pdm09 viruses were studied. Targets and goals. The purpose of the study was to obtain readapted variants of the virus from a low-virulent escape-mutant that has an increased affinity of the avian and the human types cellular receptors compared to the wild type and the comparative study of their antigenic and receptor specificity. Material and methods. Viruses were accumulated in 10-day-old chicken embryos. The MAB panel against HA of influenza virus strain A/IIV-Moscow/01/09(H1N1)sw1 was used in the form of ascites fluids from mice. Immunization of mice, HI testing, elution of viruses from chicken erythrocytes, PCR and sequencing of readapted variants were performed by standard methods. Results. The amino acid substitution A198E acquired in the process of readaptation leads to changes in the antigenic specificity. A correlation was found between a decrease in virulence of a low-virulent escape mutant associated with the substitution D190N in the hemagglutinin molecule and an increase in the hemagglutinating titer to inhibitors in normal mouse serum. Viruses with low affinity of cellular receptor analogs and carrying amino acid substitutions have an increased ability to elute from chicken erythrocytes. Discussion. The results discuss the effect of mutations in the HA molecule of the influenza A(H1N1)pdm09 virus to the change in antigen specificity; virulence for mice, adsorption-elution at cellular receptors. Conclusion. A comparative study of the antigenic specificity and receptor-binding activity of the escape mutants was conducted for the hemagglutinin of the influenza virus A/Moscow/01/2009 (H1N1)swl, and the readapted variants obtained for one of the escape mutants with reduced virulence for mouse. Monitoring the pleiotropic effect of mutations in the hemagglutinin H1 molecule is necessary to predict variants of the virus with pandemic potential.


1980 ◽  
Vol 45 (5) ◽  
pp. 1595-1600 ◽  
Author(s):  
Jaroslav Sluka ◽  
František Šmejkal ◽  
Zdeněk Buděšínský

On recation of cyclooctylamine with the sulfate of S-methylisothiourea cyclooctylguanidine was formed which was acylated with the methyl esters of 5-halogeno- and 3,5-dihalogeno-2-alkoxybenzoic acids. The 1-acyl-3-cyclooctylguanidine I-XVII formed were tested for their antiviral effect against the influenza virus A/NWS, A-PR8 and A2 Singapore, and further against the viruses NDV, herpes 2, vaccinia and WEE. In the in vivo test against the influenza virus A2 Singapore and herpes simplex 1-(5-bromo-2-dodecyloxybenzoyl)-3-cyclooctylguanidine is more active and less toxic than cyclooctylamine and 1-cyclooctylguanidine.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3678
Author(s):  
Olga V. Andreeva ◽  
Bulat F. Garifullin ◽  
Vladimir V. Zarubaev ◽  
Alexander V. Slita ◽  
Iana L. Yesaulkova ◽  
...  

A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.


2020 ◽  
Vol 15 (4) ◽  
pp. 819-823 ◽  
Author(s):  
Senlian Hong ◽  
Geramie Grande ◽  
Chenhua Yu ◽  
Digantkumar G. Chapla ◽  
Natalie Reigh ◽  
...  

2010 ◽  
Vol 171 (11) ◽  
pp. 1157-1164 ◽  
Author(s):  
T. Suess ◽  
U. Buchholz ◽  
S. Dupke ◽  
R. Grunow ◽  
Matthias an der Heiden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document