scholarly journals A New DNA Inversion Mechanism: Recombination of the DNA Foldback Intercoil Structure

2019 ◽  
Vol 116 (3) ◽  
pp. 76a
Author(s):  
Byung Ho Lee ◽  
Soojin Jo ◽  
Hyunki Kim ◽  
Sung Ha Park ◽  
Byung-Dong Kim ◽  
...  
Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1649-1663
Author(s):  
Oliver Z Nanassy ◽  
Kelly T Hughes

Abstract The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.


1990 ◽  
Vol 10 (6) ◽  
pp. 3243-3246
Author(s):  
L G Pologe ◽  
D de Bruin ◽  
J V Ravetch

Ring-infected erythrocyte surface antigen-negative isolates of Plasmodium falciparum demonstrate a complex DNA rearrangement with inversion of 5' coding sequences, deletion of upstream and flanking sequences, and healing of the truncated chromosome by telomere addition. An inversion intermediate that results in the telomeric gene structure for RESA has been identified in the pathway. This inversion creates a mitotically stable substrate for the sequence-specific addition of telomere repeats at the deletion breakpoint.


1990 ◽  
Vol 10 (6) ◽  
pp. 3243-3246 ◽  
Author(s):  
L G Pologe ◽  
D de Bruin ◽  
J V Ravetch

Ring-infected erythrocyte surface antigen-negative isolates of Plasmodium falciparum demonstrate a complex DNA rearrangement with inversion of 5' coding sequences, deletion of upstream and flanking sequences, and healing of the truncated chromosome by telomere addition. An inversion intermediate that results in the telomeric gene structure for RESA has been identified in the pathway. This inversion creates a mitotically stable substrate for the sequence-specific addition of telomere repeats at the deletion breakpoint.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Meghan M McLean ◽  
Yong Chang ◽  
Gautam Dhar ◽  
John K Heiss ◽  
Reid C Johnson

Serine recombinases are often tightly controlled by elaborate, topologically-defined, nucleoprotein complexes. Hin is a member of the DNA invertase subclass of serine recombinases that are regulated by a remote recombinational enhancer element containing two binding sites for the protein Fis. Two Hin dimers bound to specific recombination sites associate with the Fis-bound enhancer by DNA looping where they are remodeled into a synaptic tetramer competent for DNA chemistry and exchange. Here we show that the flexible beta-hairpin arms of the Fis dimers contact the DNA binding domain of one subunit of each Hin dimer. These contacts sandwich the Hin dimers to promote remodeling into the tetramer. A basic region on the Hin catalytic domain then contacts enhancer DNA to complete assembly of the active Hin tetramer. Our results reveal how the enhancer generates the recombination complex that specifies DNA inversion and regulates DNA exchange by the subunit rotation mechanism.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1247
Author(s):  
Wanapinun Nawae ◽  
Chutintorn Yundaeng ◽  
Chaiwat Naktang ◽  
Wasitthee Kongkachana ◽  
Thippawan Yoocha ◽  
...  

Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering.


1993 ◽  
Vol 175 (3) ◽  
pp. 693-700 ◽  
Author(s):  
L Dorgai ◽  
J Oberto ◽  
R A Weisberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document