scholarly journals DLITE Uses Cell-Cell Interface Movement to Better Infer Cell-Cell Tensions

2019 ◽  
Vol 117 (9) ◽  
pp. 1714-1727 ◽  
Author(s):  
Ritvik Vasan ◽  
Mary M. Maleckar ◽  
C. David Williams ◽  
Padmini Rangamani
2021 ◽  
Vol 35 (9) ◽  
Author(s):  
Takayuki Kohno ◽  
Takumi Konno ◽  
Shin Kikuchi ◽  
Masuo Kondoh ◽  
Takashi Kojima

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1544 ◽  
Author(s):  
Vivian W. Tang

The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell–cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell–cell adhesion interface.


2019 ◽  
Vol 16 (159) ◽  
pp. 20190299
Author(s):  
Ian T. Hoffecker ◽  
Yusuke Arima ◽  
Hiroo Iwata

Adhesive interactions between cells play an integral role in development, differentiation and regeneration. Existing methods for controlling cell–cell cohesion and adhesion by manipulating protein expression are constrained by biological interdependencies, e.g. coupling of cadherins to actomyosin force-feedback mechanisms. We use oligonucleotides conjugated to PEGylated lipid anchors (ssDNAPEGDPPE) to introduce artificial cell–cell adhesion that is largely decoupled from the internal cytoskeleton. We describe cell–cell doublets with a mechanical model based on isotropic, elastic deformation of spheres to estimate the adhesion at the cell–cell interface. Physical manipulation of adhesion by modulating the PEG-lipid to ssDNAPEGDPPE ratio, and conversely treating with actin-depolymerizing cytochalasin D, resulted in decreases and increases in doublet contact area, respectively. Our data are relevant to the ongoing discussion over mechanisms of tissue surface tension and in agreement with models based on opposing cortical and cohesive forces. PEG-lipid modulation of doublet geometries resulted in a well-defined curve indicating continuity, enabling prescriptive calibration for controlling doublet geometry. Our study demonstrates tuning of basic doublet adhesion, laying the foundation for more complex multicellular adhesion control independent of protein expression.


2014 ◽  
Vol 106 (10) ◽  
pp. 2196-2205 ◽  
Author(s):  
Adrienne C. Greene ◽  
Samuel J. Lord ◽  
Aiwei Tian ◽  
Christopher Rhodes ◽  
Hiroyuki Kai ◽  
...  

Cell ◽  
2008 ◽  
Vol 135 (5) ◽  
pp. 791-793 ◽  
Author(s):  
Anna Akhmanova ◽  
Alpha S. Yap
Keyword(s):  

2013 ◽  
Vol 304 (2) ◽  
pp. E145-E159 ◽  
Author(s):  
Xiang Xiao ◽  
Dolores D. Mruk ◽  
C. Yan Cheng

During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.


2019 ◽  
Author(s):  
Ian T. Hoffecker ◽  
Yusuke Arima ◽  
Hiroo Iwata

AbstractCohesive interactions between cells play an integral role in development, differentiation, and regeneration. Existing methods for controlling cell-cell cohesion by manipulating protein expression are constrained by biological interdependencies, e.g. coupling of cadherins to actomyosin force-feedback mechanisms. We use oligonucleotides conjugated to PEGylated lipid anchors (ssDNAPEGDPPE) to introduce artificial cell-cell cohesion that is largely decoupled from the internal cytoskeleton. We describe cell-cell doublets with a mechanical model based on isotropic, elastic deformation of spheres to estimate the cohesion at the cell-cell interface. Physical manipulation of cohesion by modulating PEG-lipid to ssDNAPEGDPPE ratio, and conversely treatment with actin-depolymerizing cytochalsin-D, resulted respectively in decreases and increases in doublet contact area. Our data are relevant to the ongoing discussion over mechanisms of tissue surface tension and in agreement with models based on opposing cortical and cohesive forces. PEG-lipid modulation of doublet geometries resulted in a well-defined curve indicating continuity, enabling prescriptive calibration for controlling doublet geometry. Our study demonstrates tuning of basic doublet cohesion, laying the foundation for more complex multicellular cohesion control independent of protein expression.


2001 ◽  
Vol 75 (22) ◽  
pp. 11096-11105 ◽  
Author(s):  
Catherine M. Finnegan ◽  
Werner Berg ◽  
George K. Lewis ◽  
Anthony L. DeVico

ABSTRACT Human immunodeficiency virus (HIV) fusion and entry involves sequential interactions between the viral envelope protein, gp120, cell surface CD4, and a G-protein-coupled coreceptor. Each interaction creates an intermediate gp120 structure predicted to display distinct antigenic features, including key functional domains for viral entry. In this study, we examined the disposition of these features during the fusion of HeLa cells expressing either HIVHXB2 envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various times and then arrested. The cells were then examined for reactivity with antibodies directed against receptor-induced epitopes on gp120. Analyses of cells arrested by cooling to 4°C revealed that antibodies against the CD4-induced coreceptor-binding domain, i.e., 17b, 48d, and CG10, faintly react with Env cells even in the absence of target cell or soluble CD4 (sCD4) interactions. Such reactivity increased after exposure to sCD4 but remained unchanged during fusion with target cells and was not intensified at the Env-target cell interface. Notably, the antibodies did not react with Env cells when treated with a covalent cross-linker either alone or during fusion with target cells. Immunoreactivity could not be promoted or otherwise altered on either temperature arrested or cross-linked cells by preventing coreceptor interactions or by using a 17b Fab. In comparison, two other gp120-CD4 complex-dependent antibodies against epitopes outside the coreceptor domain, 8F101 and A32, exhibited a different pattern of reactivity. These antibodies reacted with the Env-target cell interface only after 30 min of cocultivation, concurrent with the first visible transfer of cytoplasmic dye from Env to target cells. At later times, the staining surrounded entire syncytia. Such binding was entirely dependent on the formation of gp120-CD4-CXCR4 tricomplexes since staining was absent with SDF-treated or coreceptor-negative target cells. Overall, these studies show that access to the CD4-induced coreceptor-binding domain on gp120 is largely blocked at the fusing cell interface and is unlikely to represent a target for neutralizing antibodies. However, new epitopes are presented on intermediate gp120 structures formed as a result of coreceptor interactions. Such findings have important implications for HIV vaccine approaches based on conformational alterations in envelope structures.


BioEssays ◽  
2011 ◽  
Vol 33 (10) ◽  
pp. 732-736 ◽  
Author(s):  
Shigenobu Yonemura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document