scholarly journals Sim-Ptychography Imaging of Hutchinson-Gilford Progeria Syndrome (HGPS) Cells

2021 ◽  
Vol 120 (3) ◽  
pp. 180a-181a
Author(s):  
Alberta Trianni ◽  
Nicholas Anthony ◽  
Isotta Cainero ◽  
Alberto Diaspro
2021 ◽  
Vol 22 (14) ◽  
pp. 7327
Author(s):  
Juan A. Fafián-Labora ◽  
Miriam Morente-López ◽  
Fco. Javier de Toro ◽  
María C. Arufe

Hutchinson–Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 540
Author(s):  
Chao Fang ◽  
Jiaxing Yao ◽  
Xingyu Xia ◽  
Yuan Lin

As one of the most important cellular compartments, the nucleus contains genetic materials and separates them from the cytoplasm with the nuclear envelope (NE), a thin membrane that is susceptible to deformations caused by intracellular forces. Interestingly, accumulating evidence has also indicated that the morphology change of NE is tightly related to nuclear mechanotransduction and the pathogenesis of diseases such as cancer and Hutchinson–Gilford Progeria Syndrome. Theoretically, with the help of well-designed experiments, significant progress has been made in understanding the physical mechanisms behind nuclear shape transformation in different cellular processes as well as its biological implications. Here, we review different continuum-level (i.e., energy minimization, boundary integral and finite element-based) approaches that have been developed to predict the morphology and shape change of the cell nucleus. Essential gradients, relative advantages and limitations of each model will be discussed in detail, with the hope of sparking a greater research interest in this important topic in the future.


Neurology ◽  
2013 ◽  
Vol 81 (5) ◽  
pp. 427-430 ◽  
Author(s):  
N. J. Ullrich ◽  
M. W. Kieran ◽  
D. T. Miller ◽  
L. B. Gordon ◽  
Y.-J. Cho ◽  
...  

10.5772/53794 ◽  
2013 ◽  
Author(s):  
Jean-Ha Baek ◽  
Tomas McKenna ◽  
Maria Eriksso

Sign in / Sign up

Export Citation Format

Share Document