scholarly journals High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome

2021 ◽  
Vol 22 (14) ◽  
pp. 7327
Author(s):  
Juan A. Fafián-Labora ◽  
Miriam Morente-López ◽  
Fco. Javier de Toro ◽  
María C. Arufe

Hutchinson–Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.

2009 ◽  
Vol 9 ◽  
pp. 1449-1462 ◽  
Author(s):  
Baomin Li ◽  
Sonali Jog ◽  
Jose Candelario ◽  
Sita Reddy ◽  
Lucio Comai

Syndromes of accelerated aging could provide an entry point for identifying and dissecting the cellular pathways that are involved in the development of age-related pathologies in the general population. However, their usefulness for aging research has been controversial, as it has been argued that these diseases do not faithfully reflect the process of natural aging. Here we review recent findings on the molecular basis of two progeroid diseases, Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), and highlight functional connections to cellular processes that may contribute to normal aging.


2018 ◽  
Vol 115 (16) ◽  
pp. 4206-4211 ◽  
Author(s):  
Amanda J. DuBose ◽  
Stephen T. Lichtenstein ◽  
Noreen M. Petrash ◽  
Michael R. Erdos ◽  
Leslie B. Gordon ◽  
...  

LMNA encodes the A-type lamins that are part of the nuclear scaffold. Mutations in LMNA can cause a variety of disorders called laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), atypical Werner syndrome, and Emery-Dreifuss muscular dystrophy. Previous work has shown that treatment of HGPS cells with the mTOR inhibitor rapamycin or with the rapamycin analog everolimus corrects several of the phenotypes seen at the cellular level—at least in part by increasing autophagy and reducing the amount of progerin, the toxic form of lamin A that is overproduced in HGPS patients. Since other laminopathies also result in production of abnormal and potentially toxic lamin proteins, we hypothesized that everolimus would also be beneficial in those disorders. To test this, we applied everolimus to fibroblast cell lines from six laminopathy patients, each with a different mutation in LMNA. Everolimus treatment increased proliferative ability and delayed senescence in all cell lines. In several cell lines, we observed that with treatment, there is a significant improvement in nuclear blebbing, which is a cellular hallmark of HGPS and other lamin disorders. These preclinical results suggest that everolimus might have clinical benefit for multiple laminopathy syndromes.


2021 ◽  
Vol 13 (575) ◽  
pp. eabd2655
Author(s):  
Wei Wang ◽  
Yuxuan Zheng ◽  
Shuhui Sun ◽  
Wei Li ◽  
Moshi Song ◽  
...  

Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9–based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence. Moreover, lentiviral vectors encoding Cas9/sg-Kat7, given intravenously, alleviated hepatocyte senescence and liver aging and extended life span in physiologically aged mice as well as progeroid Zmpste24−/− mice that exhibit a premature aging phenotype. CRISPR-Cas9–based genetic screening is a robust method for systematically uncovering senescence genes such as KAT7, which may represent a therapeutic target for developing aging interventions.


2019 ◽  
Vol 30 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Nickolay K. Isaev ◽  
Elena V. Stelmashook ◽  
Elisaveta E. Genrikhs

AbstractHuman aging affects the entire organism, but aging of the brain must undoubtedly be different from that of all other organs, as neurons are highly differentiated postmitotic cells, for the majority of which the lifespan in the postnatal period is equal to the lifespan of the entire organism. In this work, we examine the distinctive features of brain aging and neurogenesis during normal aging, pathological aging (Alzheimer’s disease), and accelerated aging (Hutchinson-Gilford progeria syndrome and Werner syndrome).


2010 ◽  
Vol 38 (1) ◽  
pp. 281-286 ◽  
Author(s):  
Dawn T. Smallwood ◽  
Sue Shackleton

HGPS (Hutchinson–Gilford progeria syndrome) is a severe childhood disorder that appears to mimic an accelerated aging process. The disease is most commonly caused by gene mutations that disrupt the normal post-translational processing of lamin A, a structural component of the nuclear envelope. Impaired processing results in aberrant retention of a farnesyl group at the C-terminus of lamin A, leading to altered membrane dynamics. It has been widely proposed that persistence of the farnesyl moiety is the major factor responsible for the disease, prompting clinical trials of farnesyltransferase inhibitors to prevent lamin A farnesylation in children afflicted with HGPS. Although there is evidence implicating farnesylation in causing some of the cellular defects of HGPS, results of several recent studies suggest that aberrant lamin A farnesylation is not the only determinant of the disease. These findings have important implications for the design of treatments for this devastating disease.


2019 ◽  
Author(s):  
S-I. Murtada ◽  
Y. Kawamura ◽  
A.W. Caulk ◽  
H. Amadzadeh ◽  
N. Mikush ◽  
...  

SUMMARYHutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare disorder with devastating sequelae resulting in early death, presently believed to stem primarily from heart failure secondary to central arterial stiffening. We analyze novel longitudinal cardiovascular data from a mouse model of HGPS (LmnaG609G/G609G) using allometric scaling and advanced computational modelling and show that a late-stage increase in pulse wave velocity, with associated diastolic dysfunction but preserved systolic function, emerges with a loss of aortic function, independent of sex. Specifically, there is a dramatic late-stage loss of smooth muscle function and cells and an excessive accumulation of proteoglycans along the entire aorta, which result in a loss of biomechanical function (contractility and elastic energy storage) and marked structural stiffening despite a distinctly low intrinsic material stiffness that is consistent with the lack of functional lamin A. Importantly, vascular function appears to be normal within the low stress environment of development, only to succumb progressively to pressure-related effects of the lamin A mutation and become extreme in the peri-morbid period. Because the dramatic life-threatening aortic phenotype manifests during the last quarter of life there may be a therapeutic window in maturity that could alleviate concerns with therapies administered during early periods of arterial development.DisclosuresD.T.B is an equity holder in, and receives research and consulting support from, Inozyme Pharma, Inc. for therapeutics for ENPP1 deficiency. None of the other authors declare any conflict, financial or otherwise.


2020 ◽  
Author(s):  
Elísabet Alcocer-Gómez ◽  
Beatriz Castejón-Vega ◽  
Jéssica Nuñez-Vasco ◽  
Débora Lendines-Cordero ◽  
José M. Navarro-Pando ◽  
...  

AbstractInflammation is a hallmark of aging and accelerated aging syndromes. In this context, inflammation has been associated to the pathophysiology of Hutchinson–Gilford progeria syndrome (HGPS). In this study, we report that progeroid skin fibroblasts and animal models present an hyperactivation of the NLRP3-inflammasome complex. High expression of NLRP3 and caspase 1 was also observed in skin fibroblasts from HGPS associated to the nuclei morphology. Lymphoblast from HGPS also showed increased basal levels of NLRP3 and caspase 1 independent to the induction from metabolic factors. Consistent with these results, Zmpste24−/− showed high expression of Nlrp3 and caspase 1 in heart, liver and kidney and reduced levels of Nlrc3, however these changes were not observed in other inflammasomes. We also show that pharmacological inhibition of NLRP3 using a direct NLRP3 inhibitor, MCC950, improved cellular phenotype, significantly extends the lifespan of these progeroid animals and reduced inflammasome-dependent inflammation. These findings suggest the NLRP3-inflammasome comples as a therapeutic approach for patients with HGPS.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Brandon K Walther ◽  
Anahita Mojiri ◽  
Navaneeth Krishna Rajeeva Pandian ◽  
Jacques Ohayon ◽  
Huie Wang ◽  
...  

Hutchinson-Gilford Progeria Syndrome (HGPS) is a disease of accelerated aging causing death in the mid-teens from myocardial infarction or stroke. The disease is caused by a point mutation in the gene encoding lamin-A. The mutated scaffolding protein is aberrantly farnesylated inducing a constellation of defects included nuclear abnormalities, genomic damage, and rapid senescence. Therapy targeting the abnormal farnesylation provides a modest extension of life, thus new insights and therapeutic approaches are urgently needed for these children. Consistent with previous morphological observations and new studies implicating YAP/TAZ mechanobiology as an important mechanical pathway for endothelial cell (EC) health under shear stress, we hypothesized that HGPS ECs have an innate mechanical disturbance rendering them unable to respond to external, atheroprotective cues. We used a microfluidic vessel-on-a-chip with channel geometries and fluid flow to precisely model the hemodynamic stimuli present in vasculature as we have previously described. We cultured iPSC-derived HGPS ECs in this system to study mechanoresponse to shear stress and YAP/TAZ signaling. HGPS ECs manifest a rounded, flattened appearance characteristic of senescent ECs, are unable to align in response to flow, and have aberrant YAP/TAZ activity despite unidirectional laminar flow. To explore the physical underpinnings of such biochemical disturbances, we used atomic force microscopy (AFM) to precisely characterize the shape of individual HGPS cells, and their deformation to a controlled force applied by the AFM cantilever. Preliminary measurements confirmed that HGPS cells have a reduced profile and are compositely stiffer (nuclear modulus + cytoskeletal modulus) than cells derived from the unaffected parent of the child. These data provide evidence of altered biophysical properties of senescent cells which we term “mechanical aging,” which is associated with aberrant signaling in response to hemodynamic stimuli. Further characterization of mechanical aging may lead to new therapeutic approaches for HGPS and other age-related diseases.


2016 ◽  
Vol 131 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Chayki Charar ◽  
Yosef Gruenbaum

Lamins are nuclear intermediate filaments (IFs) with important roles in most nuclear activities, including nuclear organization and cell-cycle progression. Mutations in human lamins cause over 17 different diseases, termed laminopathies. Most of these diseases are autosomal dominant and can be roughly divided into four major groups: muscle diseases, peripheral neuronal diseases, accelerated aging disorders and metabolic diseases including Dunnigan type familial partial lipodystrophy (FLPD), acquired partial lipodystrophy (APL) and autosomal dominant leucodystrophy. Mutations in lamins are also associated with the metabolic syndrome (MS). Cells derived from patients suffering from metabolic laminopathies, as well as cells derived from the corresponding animal models, show a disruption of the mechanistic target of rapamycin (mTOR) pathway, abnormal autophagy, altered proliferative rate and down-regulation of genes that regulate adipogenesis. In addition, treating Hutchinson–Gilford progeria syndrome (HGPS) cells with the mTOR inhibitor rapamycin improves their fate. In this review, we will discuss the ways by which lamin genes are involved in the regulation of cell metabolism.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicholas Holzscheck ◽  
Cassandra Falckenhayn ◽  
Jörn Söhle ◽  
Boris Kristof ◽  
Ralf Siegner ◽  
...  

AbstractThe development of ‘age clocks’, machine learning models predicting age from biological data, has been a major milestone in the search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their unquestionable utility, current clocks offer little insight into the molecular biological processes driving aging, and their inner workings often remain non-transparent. Here we propose a new type of age clock, one that couples predictivity with interpretability of the underlying biology, achieved through the incorporation of prior knowledge into the model design. The clock, an artificial neural network constructed according to well-described biological pathways, allows the prediction of age from gene expression data of skin tissue with high accuracy, while at the same time capturing and revealing aging states of the pathways driving the prediction. The model recapitulates known associations of aging gene knockdowns in simulation experiments and demonstrates its utility in deciphering the main pathways by which accelerated aging conditions such as Hutchinson–Gilford progeria syndrome, as well as pro-longevity interventions like caloric restriction, exert their effects.


Sign in / Sign up

Export Citation Format

Share Document