scholarly journals Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review

Bioprinting ◽  
2022 ◽  
pp. e00191
Author(s):  
Meysam Mohammadi Zerankeshi ◽  
Rasoul Bakhshi ◽  
Reza Alizadeh
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qi Zhang ◽  
Yanjing Ji ◽  
Weiping Zheng ◽  
Mingzhe Yan ◽  
Danyang Wang ◽  
...  

Electrospun polymer/metal composite nanofibers have received much attention in the field of bone tissue engineering and regenerative medicine (BTERM) owing to their extracellular matrix- (ECM-) like structure, sufficient mechanical strength, favorable biological properties, and bone induction. In particular, electrospun nanofibers containing strontium (Sr) can significantly promote bone repair and regeneration by mediating osteolysis and osteogenesis, which offers a promising bioactive material for BTERM. In this review, we summarized the effects of electrospun nanofibers containing Sr on stem cells, osteoblasts, and osteoclasts in BTERM. Also, current challenges and future perspectives for electrospun nanofibers containing Sr in BTERM are briefly outlined. It is hoped that the systematic overview will inspire the readers to further study Sr-containing nanofibers for BTERM and accelerate their translation from the bench to the clinic.


2019 ◽  
Vol 100 ◽  
pp. 631-644 ◽  
Author(s):  
Ana Paula Moreno Madrid ◽  
Sonia Mariel Vrech ◽  
María Alejandra Sanchez ◽  
Andrea Paola Rodriguez

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1250005 ◽  
Author(s):  
BIN DUAN ◽  
MIN WANG ◽  
WILLIAM W. LU

Selective laser sintering (SLS), a rapid prototyping technology, was investigated for producing bone tissue engineering scaffolds. Completely biodegradable osteoconductive calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) scaffolds were successfully fabricated via SLS using Ca-P/PHBV nanocomposite microspheres. In the SLS manufacturing route, the architecture of tissue engineering scaffolds (pore shape, size, interconnectivity, etc.) can be designed and the sintering process can be optimized for obtaining scaffolds with desirable porous structures and mechanical properties. SLS was also shown to be very effective in producing highly complex porous structures using nanocomposite microspheres. To render SLS-formed Ca-P/PHBV scaffolds osteoinductive, recombinant human bone morphogenetic protein-2 (rhBMP-2) could be loaded onto the scaffolds. For achieving a controlled release of rhBMP-2 from scaffolds, surface modification of Ca-P/PHBV scaffolds by gelatin entrapment and heparin immobilization was needed. The immobilized heparin provided binding affinity for rhBMP-2. Surface modified Ca-P/PHBV nanocomposite scaffolds loaded with rhBMP-2 enhanced the proliferation of human umbilical cord derived mesenchymal stem cells (hUCMSCs) and also their alkaline phosphatase activity. In in vivo experiments using a rabbit model, surface modified Ca-P/PHBV nanocomposite scaffolds loaded with rhBMP-2 promoted ectopic bone formation, exhibiting their osteoinductivity. The strategy of combining advanced scaffold fabrication, nanocomposite material, and controlled growth factor delivery is promising for bone tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document