scholarly journals An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson's disease, but displays toxicity in dopamine neurons

2011 ◽  
Vol 1395 ◽  
pp. 94-107 ◽  
Author(s):  
Christina E. Khodr ◽  
Mohan K. Sapru ◽  
Jyothi Pedapati ◽  
Ye Han ◽  
Neva C. West ◽  
...  
2019 ◽  
Vol 9 (4) ◽  
pp. 73 ◽  
Author(s):  
Anthony Gaeta ◽  
Kim Caldwell ◽  
Guy Caldwell

Parkinson’s Disease (PD) is the second-most common neurodegenerative disease in the world, yet the fundamental and underlying causes of the disease are largely unknown, and treatments remain sparse and impotent. Several biological systems have been employed to model the disease but the nematode roundworm Caenorhabditis elegans (C. elegans) shows unique promise among these to disinter the elusive factors that may prevent, halt, and/or reverse PD phenotypes. Some of the most salient of these C. elegans models of PD are those that position the misfolding-prone protein alpha-synuclein (α-syn), a hallmark pathological component of PD, as the primary target for scientific interrogation. By transgenic expression of human α-syn in different tissues, including dopamine neurons and muscle cells, the primary cellular phenotypes of PD in humans have been recapitulated in these C. elegans models and have already uncovered multifarious genetic factors and chemical compounds that attenuate dopaminergic neurodegeneration. This review describes the paramount discoveries obtained through the application of different α-syn models of PD in C. elegans and highlights their established utility and respective promise to successfully uncover new conserved genetic modifiers, functional mechanisms, therapeutic targets and molecular leads for PD with the potential to translate to humans.


2019 ◽  
Vol 20 (3) ◽  
pp. 696 ◽  
Author(s):  
Dong-Hee Choi ◽  
In-Ae Choi ◽  
Cheol Lee ◽  
Ji Yun ◽  
Jongmin Lee

The neuropathology of Parkinson’s disease with dementia (PDD) has been reported to involve heterogeneous and various disease mechanisms. Alpha-synuclein (α-syn) and amyloid beta (Aβ) pathology are associated with the cognitive status of PDD, and NADPH oxidase (NOX) is known to affect a variety of cognitive functions. We investigated the effects of NOX on cognitive impairment and on α-syn and Aβ expression and aggregation in PDD. In the 6-hydroxydopamine (6-OHDA)-injected mouse model, cognitive and motor function, and the levels of α-syn, Aβ, and oligomer A11 after inhibition of NOX4 expression in the hippocampal dentate gyrus (DG) were measured by the Morris water maze, novel object recognition, rotation, and rotarod tests, as well as immunoblotting and immunohistochemistry. After 6-OHDA administration, the death of nigrostriatal dopamine neurons and the expression of α-syn and NOX1 in the substantia nigra were increased, and phosphorylated α-syn, Aβ, oligomer A11, and NOX4 were upregulated in the hippocampus. 6-OHDA dose-dependent cognitive impairment was observed, and the increased cognitive impairment, Aβ expression, and oligomer A11 production in 6-OHDA-treated mice were suppressed by NOX4 knockdown in the hippocampal DG. Our results suggest that increased expression of NOX4 in the hippocampal DG in the 6-OHDA-treated mouse induces Aβ expression and oligomer A11 production, thereby reducing cognitive function.


2014 ◽  
Vol 15 (5) ◽  
pp. 653-665 ◽  
Author(s):  
Shane Grealish ◽  
Elsa Diguet ◽  
Agnete Kirkeby ◽  
Bengt Mattsson ◽  
Andreas Heuer ◽  
...  

1986 ◽  
Vol 65 (1) ◽  
Author(s):  
P. Brundin ◽  
O.G. Nilsson ◽  
R.E. Strecker ◽  
O. Lindvall ◽  
B. �stedt ◽  
...  

Author(s):  
Gaia Faustini ◽  
Francesca Longhena ◽  
Anna Masato ◽  
Valentina Bassareo ◽  
Roberto Frau ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nora Bengoa-Vergniory ◽  
Emilie Faggiani ◽  
Paula Ramos-Gonzalez ◽  
Ecem Kirkiz ◽  
Natalie Connor-Robson ◽  
...  

Abstract Parkinson’s disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.


Sign in / Sign up

Export Citation Format

Share Document