Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: An EEG study

2019 ◽  
Vol 1722 ◽  
pp. 146338 ◽  
Author(s):  
Wei Li ◽  
Chong Li ◽  
Yun Xiang ◽  
Linhong Ji ◽  
Hui Hu ◽  
...  
2021 ◽  
Vol 11 (10) ◽  
pp. 1348
Author(s):  
Meng Cao ◽  
Jeffery M. Halperin ◽  
Xiaobo Li

Traumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to adverse outcomes. This study investigated the topological properties of the functional brain network for sustained attention processing and their dynamics in 42 children with severe post-TBI attention deficits (TBI-A) and 47 matched healthy controls. Functional MRI data during a block-designed sustained attention task was collected for each subject, with each full task block further divided into the pre-, early, late-, and post-stimulation stages. The task-related functional brain network was constructed using the graph theoretic technique. Then, the sliding-window-based method was utilized to assess the dynamics of the topological properties in each stimulation stage. Relative to the controls, the TBI-A group had significantly reduced nodal efficiency and/or degree of left postcentral, inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be significantly associated with elevated inattentive symptoms in children with TBI-A. These results suggest that abnormal functional network characteristics and their dynamics associated with the left parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.


2021 ◽  
Author(s):  
Meng Cao ◽  
Jeffrey M. Halperin ◽  
Xiaobo Li

ABSTRACTTraumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to adverse outcomes. This study investigated the topological properties of the functional brain network for sustained attention processing and their dynamics in 42 children with severe post-TBI attention deficits (TBI-A) and 47 matched healthy controls. Functional MRI (fMRI) data during a block-designed sustained attention task was collected for each subject, with each full task block further divided into the pre-, early-, late-, and post-stimulation stages. The task-related functional brain network was constructed using the graph theoretic technique. Then the sliding-window-based method was utilized to assess the dynamics of the topological properties in each stimulation stage. The results showed that relative to the matched controls, children with TBI-A had significantly reduced nodal efficiency and/or degree of left postcentral, inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early- and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be significantly associated with elevated inattentive symptoms in children with TBI-A. These results suggest that abnormal functional network characteristics and their dynamics associated with left parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.


Heliyon ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. e04854 ◽  
Author(s):  
Erlend S. Dørum ◽  
Tobias Kaufmann ◽  
Dag Alnæs ◽  
Geneviève Richard ◽  
Knut K. Kolskår ◽  
...  

2020 ◽  
Author(s):  
Da-Hye Kim ◽  
Gyu Hyun Kwon ◽  
Wanjoo Park ◽  
Yun-Hee Kim ◽  
Seong-Whan Lee ◽  
...  

Abstract Background. While numerous studies have investigated changes in brain activation after stroke, limited information exists on the association between functional brain networks and lesion location in stroke patients. Methods. We compared the characteristics of brain networks among patients with cortico-subcortical lesions (n = 5), subcortical lesions (n = 7), and age-matched healthy controls (n = 12) during the execution of hand movements. Functional brain networks were analyzed based on network parameters in beta frequency electroencephalography (EEG) bands. Results. Our results indicated that while the healthy control group had appropriate compensatory patterns on the brain network with an aging effect, the two stroke lesion groups exhibited different hyper-connected characteristics in the brain network within the sensorimotor regions, particularly the contralesional M1, during motor execution. In addition, the betweenness centrality on the contralesional motor area was identified as a promising biomarker for motor functional ability associated with stroke. Our findings further allowed us to identify the characteristics of the stroke lesion that could not be found with EEG power by using the EEG brain network on the cerebral cortex. Conclusions. We anticipate that our study will improve the understanding of the complex changes that occur in the brain network as a result of stroke, and support the development of more effective and efficient rehabilitation programs based on lesion location for stroke patients.


2021 ◽  
Author(s):  
Silvia Minosse ◽  
Eliseo Picchi ◽  
Francesca Di Giuliano ◽  
Loredana Sarmati ◽  
Elisabetta Teti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document