scholarly journals Abnormal Functional Network Topology and Its Dynamics during Sustained Attention Processing Significantly Implicate Post-TBI Attention Deficits in Children

2021 ◽  
Vol 11 (10) ◽  
pp. 1348
Author(s):  
Meng Cao ◽  
Jeffery M. Halperin ◽  
Xiaobo Li

Traumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to adverse outcomes. This study investigated the topological properties of the functional brain network for sustained attention processing and their dynamics in 42 children with severe post-TBI attention deficits (TBI-A) and 47 matched healthy controls. Functional MRI data during a block-designed sustained attention task was collected for each subject, with each full task block further divided into the pre-, early, late-, and post-stimulation stages. The task-related functional brain network was constructed using the graph theoretic technique. Then, the sliding-window-based method was utilized to assess the dynamics of the topological properties in each stimulation stage. Relative to the controls, the TBI-A group had significantly reduced nodal efficiency and/or degree of left postcentral, inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be significantly associated with elevated inattentive symptoms in children with TBI-A. These results suggest that abnormal functional network characteristics and their dynamics associated with the left parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.

2021 ◽  
Author(s):  
Meng Cao ◽  
Jeffrey M. Halperin ◽  
Xiaobo Li

ABSTRACTTraumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to adverse outcomes. This study investigated the topological properties of the functional brain network for sustained attention processing and their dynamics in 42 children with severe post-TBI attention deficits (TBI-A) and 47 matched healthy controls. Functional MRI (fMRI) data during a block-designed sustained attention task was collected for each subject, with each full task block further divided into the pre-, early-, late-, and post-stimulation stages. The task-related functional brain network was constructed using the graph theoretic technique. Then the sliding-window-based method was utilized to assess the dynamics of the topological properties in each stimulation stage. The results showed that relative to the matched controls, children with TBI-A had significantly reduced nodal efficiency and/or degree of left postcentral, inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early- and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be significantly associated with elevated inattentive symptoms in children with TBI-A. These results suggest that abnormal functional network characteristics and their dynamics associated with left parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.


Neurology ◽  
2017 ◽  
Vol 89 (17) ◽  
pp. 1764-1772 ◽  
Author(s):  
Massimo Filippi ◽  
Silvia Basaia ◽  
Elisa Canu ◽  
Francesca Imperiale ◽  
Alessandro Meani ◽  
...  

Objective:To investigate functional brain network architecture in early-onset Alzheimer disease (EOAD) and behavioral variant frontotemporal dementia (bvFTD).Methods:Thirty-eight patients with bvFTD, 37 patients with EOAD, and 32 age-matched healthy controls underwent 3D T1-weighted and resting-state fMRI. Graph analysis and connectomics assessed global and local functional topologic network properties, regional functional connectivity, and intrahemispheric and interhemispheric between-lobe connectivity.Results:Despite similarly extensive cognitive impairment relative to controls, patients with EOAD showed severe global functional network alterations (lower mean nodal strength, local efficiency, clustering coefficient, and longer path length), while patients with bvFTD showed relatively preserved global functional brain architecture. Patients with bvFTD demonstrated reduced nodal strength in the frontoinsular lobe and a relatively focal altered functional connectivity of frontoinsular and temporal regions. Functional connectivity breakdown in the posterior brain nodes, particularly in the parietal lobe, differentiated patients with EOAD from those with bvFTD. While EOAD was associated with widespread loss of both intrahemispheric and interhemispheric functional correlations, bvFTD showed a preferential disruption of the intrahemispheric connectivity.Conclusions:Disease-specific patterns of functional network topology and connectivity alterations were observed in patients with EOAD and bvFTD. Graph analysis and connectomics may aid clinical diagnosis and help elucidate pathophysiologic differences between neurodegenerative dementias.


2018 ◽  
Author(s):  
Marjolein Spronk ◽  
Kaustubh Kulkarni ◽  
Jie Lisa Ji ◽  
Brian P. Keane ◽  
Alan Anticevic ◽  
...  

AbstractA wide variety of mental disorders have been associated with resting-state functional network alterations, which are thought to contribute to the cognitive changes underlying mental illness. These observations have seemed to support various theories postulating large-scale disruptions of brain systems in mental illness. However, existing approaches isolate differences in network organization without putting those differences in broad, whole-brain perspective. Using a graph distance measure – connectome-wide correlation – we found that whole-brain resting-state functional network organization in humans is highly similar across a variety of mental diseases and healthy controls. This similarity was observed across autism spectrum disorder, attention-deficit hyperactivity disorder, and schizophrenia. Nonetheless, subtle differences in network graph distance were predictive of diagnosis, suggesting that while functional connectomes differ little across health and disease those differences are informative. Such small network alterations may reflect the fact that most psychiatric patients maintain overall cognitive abilities similar to those of healthy individuals (relative to, e.g., the most severe schizophrenia cases), such that whole-brain functional network organization is expected to differ only subtly even for mental diseases with devastating effects on everyday life. These results suggest a need to reevaluate neurocognitive theories of mental illness, with a role for subtle functional brain network changes in the production of an array of mental diseases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chunyan Li ◽  
Xiaomin Pang ◽  
Ke Shi ◽  
Qijia Long ◽  
Jinping Liu ◽  
...  

BackgroundIn recent years, imaging technologies have been rapidly evolving, with an emphasis on the characterization of brain structure changes and functional imaging in patients with autoimmune encephalitis. However, the neural basis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and its linked cognitive decline is unclear. Our research aimed to assess changes in the functional brain network in patients with anti-NMDAR encephalitis and whether these changes lead to cognitive impairment.MethodsTwenty-one anti-NMDAR encephalitis patients and 22 age-, gender-, and education status-matched healthy controls were assessed using resting functional magnetic resonance imaging (fMRI) scanning and neuropsychological tests, including the Hamilton Depression Scale (HAMD24), the Montreal Cognitive Assessment (MoCA), and the Hamilton Anxiety Scale (HAMA). A functional brain network was constructed using fMRI, and the topology of the network parameters was analyzed using graph theory. Next, we extracted the aberrant topological parameters of the functional network as seeds and compared causal connectivity with the whole brain. Lastly, we explored the correlation of aberrant topological structures with deficits in cognitive performance.ResultsRelative to healthy controls, anti-NMDAR encephalitis patients exhibited decreased MoCA scores and increased HAMA and HAMD24 scores (p < 0.05). The nodal clustering coefficient and nodal local efficiency of the left insula (Insula_L) were significantly decreased in anti-NMDAR encephalitis patients (p < 0.05 following Bonferroni correction). Moreover, anti-NMDAR encephalitis patients showed a weakened causal connectivity from the left insula to the left inferior parietal lobe (Parietal_Inf_L) compared to healthy controls. Conversely, the left superior parietal lobe (Parietal_sup_L) exhibited an enhanced causal connectivity to the left insula in anti-NMDAR encephalitis patients compared to controls. Unexpectedly, these alterations were not correlated with any neuropsychological test scores.ConclusionThis research describes topological abnormalities in the functional brain network in anti-NMDAR encephalitis. These results will be conducive to understand the structure and function of the brain network of patients with anti-NMDAR encephalitis and further explore the neuropathophysiological mechanisms.


2018 ◽  
Author(s):  
Benjamin A. Seitzman ◽  
Caterina Gratton ◽  
Scott Marek ◽  
Ryan V. Raut ◽  
Nico U.F. Dosenbach ◽  
...  

AbstractAn important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volumetric regions of interest (ROIs) reported in Power et al., 2011 and (2) 333 cortical surface parcels reported in Gordon et al., 2016. However, subcortical and cerebellar structures are either incompletely captured or missing from these ROI sets. Therefore, properties of functional network organization involving the subcortex and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning method to resting-state fMRI data to generate novel functionally-constrained ROIs in the thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs in three datasets using several criteria, including agreement with existing literature and anatomical atlases. Further, we demonstrate that combining these ROIs with established cortical ROIs recapitulates and extends previously described functional network organization. This new set of ROIs is made publicly available for general use, including a full list of MNI coordinates and functional network labels.


2018 ◽  
Author(s):  
Michel R.T. Sinke ◽  
Jan W. Buitenhuis ◽  
Frank van der Maas ◽  
Job Nwiboko ◽  
Rick M. Dijkhuizen ◽  
...  

AbstractProlonged auditory sensory deprivation leads to brain reorganization, indicated by functional enhancement in remaining sensory systems, a phenomenon known as cross-modal plasticity. In this study we investigated differences in functional brain network shifts from eyes-closed to eyes-open conditions between deaf and hearing people. Electroencephalography activity was recorded in deaf (N = 71) and hearing people (N = 122) living in rural Africa, which yielded a unique data-set of congenital, pre-lingual and post-lingual deaf people, with a divergent experience in American Sign Language. Functional networks were determined from the synchronization of electroencephalography signals between fourteen electrodes distributed over the scalp. We studied the synchronization between the auditory and visual cortex and performed whole-brain minimum spanning tree analysis based on the phase lag index of functional connectivity. This tree analysis accounts for variations in global network density and allows unbiased characterization of functional network backbones. We found increased functional connectivity between the auditory and visual cortex in deaf people during the eyes-closed condition in both the alpha and beta bands. Furthermore, we found functional network backbone shifts both in deaf and healthy people as they went from eyes-closed to eyes-open conditions. In both the alpha and beta band the deafs’ brain showed larger functional backbone-shifts in node strength compared to controls. In the alpha band this shift in network strength differed among deaf participants and depended on type of deafness: congenital, pre-lingual or post-lingual deafness. In addition, a correlation was found between functional backbone characteristics and experience of sign language. Our study revealed more insights in functional network reorganization specifically due to prolonged lack of auditory input, but might also be helpful for sensory deprivation and cross-modal plasticity in general. Global cortical network reorganization in deaf people supports the plastic capacities of the young brain. The differences between type of deafness stresses that etiology affects functional reorganization, whereas the association between network organization and acquired sign language experience reflects ongoing brain adaptation in people with hearing disabilities.


Sign in / Sign up

Export Citation Format

Share Document