Intrahippocampal 5-HT1A receptor antagonist inhibits the improving effect of low-frequency stimulation on memory impairment in kindled rats

2019 ◽  
Vol 148 ◽  
pp. 109-117
Author(s):  
Alireza Gharib ◽  
Alireza Komaki ◽  
Hamed Manoochehri Khoshinani ◽  
Massoud Saidijam ◽  
Victoria Barkley ◽  
...  
1999 ◽  
Vol 82 (4) ◽  
pp. 1957-1964 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Tatsuya Asai ◽  
Mirjana Randić ◽  
Kazuyuki Murase

The neuronal plasticity in the spinal dorsal horn induced after conditioning low-frequency stimulation of afferent A fibers, and its relationship with spinal inhibitory networks, was investigated with an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net excitation of neuronal elements along the thickness of each slice, was suppressed after a conditioning low-frequency stimulation (0.2–1 Hz for 10 min) to A fibers in the dorsal root. The degree of suppression was largest in the lamina II of the dorsal horn (48% reduction), where the majority of C fibers terminate, and much less in the deeper dorsal horn (5% reduction in laminae III–IV). The onset of suppression was somewhat slow; after the low-frequency stimulation, the magnitude of excitation gradually decreased, reached the maximum effect 30 min after the conditioning, and remained at the suppressed level for >1 h. Suppression was not observed when the low-frequency stimulation was given during a 20-min perfusion with a solution containing an NMDA-receptor antagonist, dl-2-amino-5-phosphonovaleric acid (30 μM). A brief application of an opioid-receptor antagonist, naloxone (0.5 μM), inhibited the induction, but not the maintenance, of low-frequency stimulus-induced suppression. However, treatments with the GABAA receptor antagonist bicuculline (1 μM) and the glycine receptor antagonist strychnine (0.3 μM) did not affect suppression induction and maintenance. In conclusion, conditioning low-frequency stimulation to A fibers interferes with the afferent-induced excitation in the dorsal horn. The low-frequency stimulation-induced suppression is maintained by a reduction of glutamatergic excitatory transmissions in the dorsal horn, not by an enhanced inhibition. Activation of the spinal opioid-mediated system by low-frequency stimulation, but not the inhibitory amino acid–mediated system, is necessary to initiate robust suppression. The long-term depression of afferent synaptic efficacy onto excitatory interneurons likely takes the primary role in the robust suppression of neuronal excitation in the dorsal horn.


2005 ◽  
Vol 50 (12) ◽  
pp. 1005-1013 ◽  
Author(s):  
Konosuke Yamasaki ◽  
Shuitsu Harada ◽  
Itsuro Higuchi ◽  
Mitsuhiro Osame ◽  
Gakuji Ito

1957 ◽  
Vol 40 (3) ◽  
pp. 435-450 ◽  
Author(s):  
David P. C. Lloyd

An assemblage of individual motoneurons constituting a synthetic motoneuron pool has been studied from the standpoint of relating monosynaptic reflex responses to frequency of afferent stimulation. Intensity of low frequency depression is not a simple function of transmitter potentiality. As frequency of stimulation increases from 3 per minute to 10 per second, low frequency depression increases in magnitude. Between 10 and approximately 60 per second low frequency depression apparently diminishes and subnormality becomes a factor in causing depression. At frequencies above 60 per second temporal summation occurs, but subnormality limits the degree of response attainable by summation. At low stimulation frequencies rhythm is determined by stimulation frequency. Interruptions of rhythmic firing depend solely upon temporal fluctuation of excitability. At high frequency of stimulation rhythm is determined by subnormality rather than inherent rhythmicity, and excitability fluctuation leads to instability of response rhythm. In short, whatever the stimulation frequency, random excitability fluctuation is the factor disrupting rhythmic response. Monosynaptic reflex response latency is stable during high frequency stimulation as it is in low frequency stimulation provided a significant extrinsic source of random bombardment is not present. In the presence of powerful random bombardment discharge may become random with respect to monosynaptic afferent excitation provided the latter is feeble. When this occurs it does so equally at low frequency and high frequency. Thus temporal summation is not a necessary factor. There is, then, no remaining evidence to suggest that the agency for temporal summation in the monosynaptic system becomes a transmitting agency in its own right.


1993 ◽  
Vol 69 (3) ◽  
pp. 953-964 ◽  
Author(s):  
P. W. Glimcher ◽  
D. L. Sparks

1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40–60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.


Sign in / Sign up

Export Citation Format

Share Document