scholarly journals Non-invasive selective modulation of top-down attention

2021 ◽  
Vol 14 (6) ◽  
pp. 1642
Author(s):  
Jeroen Brus ◽  
Fabian Gonzalez ◽  
Joseph Heng ◽  
Marcus Grueschow ◽  
Rafael Polania
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 616
Author(s):  
Bong Han Lee ◽  
Ryan Lee McKinney ◽  
Md. Tanvir Hasan ◽  
Anton V. Naumov

Non-invasive temperature sensing is necessary to analyze biological processes occurring in the human body, including cellular enzyme activity, protein expression, and ion regulation. To probe temperature-sensitive processes at the nanoscale, novel luminescence nanothermometers are developed based on graphene quantum dots (GQDs) synthesized via top-down (RGQDs) and bottom-up (N-GQDs) approaches from reduced graphene oxide and glucosamine precursors, respectively. Because of their small 3–6 nm size, non-invasive optical sensitivity to temperature change, and high biocompatibility, GQDs enable biologically safe sub-cellular resolution sensing. Both GQD types exhibit temperature-sensitive yet photostable fluorescence in the visible and near-infrared for RGQDs, utilized as a sensing mechanism in this work. Distinctive linear and reversible fluorescence quenching by up to 19.3% is observed for the visible and near-infrared GQD emission in aqueous suspension from 25 °C to 49 °C. A more pronounced trend is observed with GQD nanothermometers internalized into the cytoplasm of HeLa cells as they are tested in vitro from 25 °C to 45 °C with over 40% quenching response. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized GQDs studied in this work can serve as non-invasive reversible/photostable deterministic mechanisms for temperature sensing in microscopic sub-cellular biological environments.


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2001 ◽  
Vol 120 (5) ◽  
pp. A266-A266
Author(s):  
R BUTLER ◽  
B ZACHARAKIS ◽  
D MOORE ◽  
K CRAWFORD ◽  
G DAVIDSON ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A491-A491 ◽  
Author(s):  
A LEODOLTER ◽  
D VAIRA ◽  
F BAZZOLL ◽  
A HIRSCHL ◽  
F MEGRAUD ◽  
...  
Keyword(s):  

2020 ◽  
Vol 158 (6) ◽  
pp. S-1249
Author(s):  
Yuri Hanada ◽  
Juan Reyes Genere ◽  
Bryan Linn ◽  
Tiffany Mangels-Dick ◽  
Kenneth K. Wang

2007 ◽  
Vol 177 (4S) ◽  
pp. 430-430
Author(s):  
Ram Ganapathi ◽  
Troy R. Gianduzzo ◽  
Arul Mahadevan ◽  
Monish Aron ◽  
Lee E. Ponsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document