High throughput sequencing enables discovery of microsatellites from the puff-throated bulbul (Alophoixus pallidus) and assessment of genetic diversity in Khao Yai National Park, Thailand

2014 ◽  
Vol 55 ◽  
pp. 176-183 ◽  
Author(s):  
Robert B. Page ◽  
Wangworn Sankamethawee ◽  
Andrew J. Pierce ◽  
Ken A. Sterling ◽  
David H. Reed ◽  
...  
Viruses ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 385 ◽  
Author(s):  
Asimina Katsiani ◽  
Varvara Maliogka ◽  
Nikolaos Katis ◽  
Laurence Svanella-Dumas ◽  
Antonio Olmos ◽  
...  

Little cherry virus 1 (LChV1, Velarivirus, Closteroviridae) is a widespread pathogen of sweet or sour cherry and other Prunus species, which exhibits high genetic diversity and lacks a putative efficient transmission vector. Thus far, four distinct phylogenetic clusters of LChV1 have been described, including isolates from different Prunus species. The recent application of high throughput sequencing (HTS) technologies in fruit tree virology has facilitated the acquisition of new viral genomes and the study of virus diversity. In the present work, several new LChV1 isolates from different countries were fully sequenced using different HTS approaches. Our results reveal the presence of further genetic diversity within the LChV1 species. Interestingly, mixed infections of the same sweet cherry tree with different LChV1 variants were identified for the first time. Taken together, the high intra-host and intra-species diversities of LChV1 might affect its pathogenicity and have clear implications for its accurate diagnostics.


2018 ◽  
Vol 198 ◽  
pp. 189-194 ◽  
Author(s):  
Zoila Raquel Siccha-Ramirez ◽  
Francesco Maroso ◽  
Belén G. Pardo ◽  
Carlos Fernández ◽  
Paulino Martínez ◽  
...  

2016 ◽  
Vol 162 (4) ◽  
pp. 1019-1023 ◽  
Author(s):  
Axel Mauroy ◽  
Bernard Taminiau ◽  
Carine Nezer ◽  
Elsa Ghurburrun ◽  
Denis Baurain ◽  
...  

Genome ◽  
2019 ◽  
Vol 62 (3) ◽  
pp. 85-95 ◽  
Author(s):  
Jeremy R. deWaard ◽  
Valerie Levesque-Beaudin ◽  
Stephanie L. deWaard ◽  
Natalia V. Ivanova ◽  
Jaclyn T.A. McKeown ◽  
...  

Monitoring changes in terrestrial arthropod communities over space and time requires a dramatic increase in the speed and accuracy of processing samples that cannot be achieved with morphological approaches. The combination of DNA barcoding and Malaise traps allows expedited, comprehensive inventories of species abundance whose cost will rapidly decline as high-throughput sequencing technologies advance. Aside from detailing protocols from specimen sorting to data release, this paper describes their use in a survey of arthropod diversity in a national park that examined 21 194 specimens representing 2255 species. These protocols can support arthropod monitoring programs at regional, national, and continental scales.


2018 ◽  
Vol 22 (5) ◽  
pp. 531-535 ◽  
Author(s):  
E. V. Borkhert ◽  
G. S. Krasnov ◽  
N. L. Bolsheva ◽  
Р. Kezimana ◽  
O. Yu. Yurkevich ◽  
...  

Poplars are widely used in landscaping of Moscow due to the ability to effectively purify the air from harmful impurities and to release a large amount of oxygen. The genusPopulusis characterized by a high level of intraspecies polymorphism, as well as the presence of natural interspecies hybrids. The aim of our work was to evaluate the genetic diversity of poplars, which are growing on the territory of Moscow city by high-throughput sequencing of internal transcribed spacers of 45S rRNA genes (ITS sequences). Sequencing of ITS of 40 poplar plants was performed on Illumina platform (MiSeq) and about 3 000 reads were obtained for each sample in average. Bioinformatics analysis was performed using CLC Genomics Workbench tool. The involved set of poplars had a high level of genetic diversity – the number of single nucleotide polymorphisms (SNPs) detected in each genotype relative to the reference ITS1 and ITS2 sequences ofP. trichocarpavarying from 4 to 44. We showed that even trees which had been planted on the same territory and, probably, at the same time had significant genetic differences. It can be speculated that highly polymorphic plant material was used for planting poplars in Moscow. For some sites with SNPs, several variants of nucleotides were found in the same individual and the ratio of SNPs was different. We assume that close to 50/50 ratio is observed in interspecific hybrids due to genetic differences in the ITS sequences between maternal and paternal genotypes. For SNPs with a predominance of one of the variants, the presence of paralogues among numerous genomic copies of ITS sequences is more likely. The results of our work can provide a framework for molecular genetic markers application with the purpose ofPopulusspecies and interspecific hybrids identification, determination the origin of a number of natural hybrids, and monitoring the diversity of genusPopulusin the Moscow city.


Author(s):  
Susana Posada-Céspedes ◽  
David Seifert ◽  
Ivan Topolsky ◽  
Karin J. Metzner ◽  
Niko Beerenwinkel

AbstractHigh-throughput sequencing technologies are used increasingly, not only in viral genomics research but also in clinical surveillance and diagnostics. These technologies facilitate the assessment of the genetic diversity in intra-host virus populations, which affects transmission, virulence, and pathogenesis of viral infections. However, there are two major challenges in analysing viral diversity. First, amplification and sequencing errors confound the identification of true biological variants, and second, the large data volumes represent computational limitations. To support viral high-throughput sequencing studies, we developed V-pipe, a bioinformatics pipeline combining various state-of-the-art statistical models and computational tools for automated end-to-end analyses of raw sequencing reads. V-pipe supports quality control, read mapping and alignment, low-frequency mutation calling, and inference of viral haplotypes. For generating high-quality read alignments, we developed a novel method, called ngshmmalign, based on profile hidden Markov models and tailored to small and highly diverse viral genomes. V-pipe also includes benchmarking functionality providing a standardized environment for comparative evaluations of different pipeline configurations. We demonstrate this capability by assessing the impact of three different read aligners (Bowtie 2, BWA MEM, ngshmmalign) and two different variant callers (LoFreq, ShoRAH) on the performance of calling single-nucleotide variants in intra-host virus populations. V-pipe supports various pipeline configurations and is implemented in a modular fashion to facilitate adaptations to the continuously changing technology landscape. V-pipe is freely available at https://github.com/cbg-ethz/V-pipe.


Sign in / Sign up

Export Citation Format

Share Document