scholarly journals A computation-efficient CNN system for high-quality brain tumor segmentation

2022 ◽  
Vol 74 ◽  
pp. 103475
Author(s):  
Yanming Sun ◽  
Chunyan Wang
2021 ◽  
Vol 11 (2) ◽  
pp. 564
Author(s):  
Ágnes Győrfi ◽  
László Szilágyi ◽  
Levente Kovács

The accurate and reliable segmentation of gliomas from magnetic resonance image (MRI) data has an important role in diagnosis, intervention planning, and monitoring the tumor’s evolution during and after therapy. Segmentation has serious anatomical obstacles like the great variety of the tumor’s location, size, shape, and appearance and the modified position of normal tissues. Other phenomena like intensity inhomogeneity and the lack of standard intensity scale in MRI data represent further difficulties. This paper proposes a fully automatic brain tumor segmentation procedure that attempts to handle all the above problems. Having its foundations on the MRI data provided by the MICCAI Brain Tumor Segmentation (BraTS) Challenges, the procedure consists of three main phases. The first pre-processing phase prepares the MRI data to be suitable for supervised classification, by attempting to fix missing data, suppressing the intensity inhomogeneity, normalizing the histogram of observed data channels, generating additional morphological, gradient-based, and Gabor-wavelet features, and optionally applying atlas-based data enhancement. The second phase accomplishes the main classification process using ensembles of binary decision trees and provides an initial, intermediary labeling for each pixel of test records. The last phase reevaluates these intermediary labels using a random forest classifier, then deploys a spatial region growing-based structural validation of suspected tumors, thus achieving a high-quality final segmentation result. The accuracy of the procedure is evaluated using the multi-spectral MRI records of the BraTS 2015 and BraTS 2019 training data sets. The procedure achieves high-quality segmentation results, characterized by average Dice similarity scores of up to 86%.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2017 ◽  
Vol 16 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Tianming Zhan ◽  
Yi Chen ◽  
Xunning Hong ◽  
Zhenyu Lu ◽  
Yunjie Chen

2021 ◽  
Vol 11 (1) ◽  
pp. 380-390
Author(s):  
Pradipta Kumar Mishra ◽  
Suresh Chandra Satapathy ◽  
Minakhi Rout

Abstract Segmentation of brain image should be done accurately as it can help to predict deadly brain tumor disease so that it can be possible to control the malicious segments of brain image if known beforehand. The accuracy of the brain tumor analysis can be enhanced through the brain tumor segmentation procedure. Earlier DCNN models do not consider the weights as of learning instances which may decrease accuracy levels of the segmentation procedure. Considering the above point, we have suggested a framework for optimizing the network parameters such as weight and bias vector of DCNN models using swarm intelligent based algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). The simulation results reveals that the WOA optimized DCNN segmentation model is outperformed than other three optimization based DCNN models i.e., GA-DCNN, PSO-DCNN, GWO-DCNN.


Sign in / Sign up

Export Citation Format

Share Document