scholarly journals Covalently immobilized chemically modified lysozyme as a sorbent for bacterial endotoxins (lipopolysaccharides)

2019 ◽  
Vol 24 ◽  
pp. e00381 ◽  
Author(s):  
Pavel A. Levashov ◽  
Darya A. Matolygina ◽  
Oxana A. Dmitrieva ◽  
Ekaterina D. Ovchinnikova ◽  
Irina Yu. Adamova ◽  
...  
1989 ◽  
Vol 61 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Richard A Harvey ◽  
Hugh C Kim ◽  
Jonathan Pincus ◽  
Stanley Z Trooskin ◽  
Josiah N Wilcox ◽  
...  

SummaryTissue plasminogen activator labeled with radioactive iodine (125I-tPA) was immobilized on vascular prostheses chemically modified with a thin coating of water-insoluble surfactant, tridodecylmethylammonium chloride (TDM AC). Surfactant- treated Dacron, polytetrafluoroethylene (PTFE), silastic, polyethylene and polyurethane bound appreciable amounts of 125I- tPA (5-30 μg 125I-tPA/cm2). Upon exposure to human plasma, the amount of 125I-tPA bound to the surface shows an initial drop during the first hour of incubation, followed by a slower, roughly exponential release with a t½ of appoximately 75 hours. Prostheses containing bound tPA show fibrinolytic activity as measured both by lysis of clots formed in vitro, and by hydrolysis of a synthetic polypeptide substrate. Prior to incubation in plasma, tPA bound to a polymer surface has an enzymic activity similar, if not identical to that of the native enzyme in buffered solution. However, exposure to plasma causes a decrease in the fibrinolytic activity of both bound tPA and enzyme released from the surface of the polymer. These data demonstrate that surfactant-treated prostheses can bind tPA, and that these chemically modified devices can act as a slow-release drug delivery system with the potential for reducing prosthesis-induced thromboembolism.


1979 ◽  
Author(s):  
T Harada ◽  
M Ohki ◽  
M Niwa ◽  
S Iwanaga

Limulus hemocyte lysate contains a proclotting enzyme, which is transformed to the active clotting enzyme in the presence of gram-negative bacterial endotoxins. The clotting enzyme coagulates a clottable protein, named coagulogen, contained also in the lysate. This gelation reaction of the lysate, named Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. We developed a new fluorogenic substrate, Boc-Leu-Gly-Arg-4-methylcoumarin amide, for Limulus clotting enzyme and established an enzymatic assay method for endotoxins, using the substrate. Because the endotoxin mediates the activation of proclotting enzyme in the lysate, the measurement of amidase activity could be applicable for quantitation of the endotoxins. In fact, the amidase activity determined fluorometrically increased by increasing concentration of E. coli 0111: B4 endotoxin added to the lysate, and a linear relationship between the toxin concentration and the activity was observed in the range of 5X10-6to 5xl0-2 µg endotoxin. The method was a fifty times more sensitive than that of the Limulus test and was very reproducible. However, the method was not directly applicable for the assay of endotoxins in circulating blood, as the amidase activity was strongly inhibited by antithrombin III and α2-plasmin inhibitor. Thus, some pretreatment with heat or chloroform on plasma samples before the assay was required.


2012 ◽  
pp. 141208072802005
Author(s):  
Fabiano Ribeiro Cirano ◽  
ADRIANE TOGASHI ◽  
MARCIA MARQUES ◽  
FRANCISCO PUSTIGLIONI ◽  
LUIZ LIMA

2018 ◽  
Vol 68 (12) ◽  
pp. 2799-2803
Author(s):  
Maria Daniela Pop ◽  
Oana Brincoveanu ◽  
Mihaela Cristea ◽  
George Octavian Buica ◽  
Marius Enachescu ◽  
...  

Preparation and microscopy characterization of polymer modified glassy carbon electrodes based on (5-[(azulen-1-yl) methylene]-2-thioxothiazolidin-4-one (L) were reported. Atomic Force Microscopy was used to investigate the morphological and mechanical properties of the deposited polyL films onto glassy carbon. The topography images of the analyzed samples exhibited the presence of some columnar shape features onto the layer surfaces. The surface roughness of the layers deposited at constant charge calculated from topography images, increased with the more positive applied potential for controlled potential electrolysis. At different charges, the roughness parameter showed the same behavior for the layers obtained applying a constant potential without having a noticeable influence on the adhesion properties on the substrate. Analysis using scanning electron microscopy shows a relatively uniform surface arrangement of the polymer and the presence of some clusters which are disturbing the planarity. PolyL chemically modified electrodes have been used for heavy metal ions detection with best results for lead.


Sign in / Sign up

Export Citation Format

Share Document