Life cycle analysis of energy consumption and CO 2 emissions from a typical large office building in Tianjin, China

2017 ◽  
Vol 117 ◽  
pp. 36-48 ◽  
Author(s):  
Jia-Jun Ma ◽  
Gang Du ◽  
Zeng-Kai Zhang ◽  
Pei-Xing Wang ◽  
Bai-Chen Xie
2011 ◽  
Vol 17 (2) ◽  
pp. 105-118 ◽  
Author(s):  
Huijun J. Wu ◽  
Zengwei W. Yuan ◽  
Ling Zhang ◽  
Jun Bi

2021 ◽  
Author(s):  
◽  
Alejo Andres Palma Olivares

<p>The aim of this research is to establish whether container architecture in the residential sector of New Zealand is energy efficient in contrast with traditional houses built by different building materials. This study is part of a discussion on sustainability in prefabricated architecture. The term "container architecture" has not been assessed in depth yet. On the other hand, the concept of prefabrication in architecture is well documented. Despite the large amount of empirical knowledge, little is known about container architecture in the residential sector. A comparative life cycle analysis has been undertaken by emphasising three different approaches: Energy consumption, CO2 emissions and the thermal performance of three conventional building materials (steel, concrete and timber-based structures) in the residential sector of New Zealand. Results from international studies of the Life Cycle Analysis (LCA) method in houses have been mixed. A number of studies suggest the importance of this methodology in order to achieve benefits in the reduction of energy consumption and CO2 emissions. Most of these studies agree that operational energy is the highest driver of both the energy consumed and CO2 emitted. However, some studies disagree with this approach due to the assumption made in the underestimation of the energy used in the transport of raw materials in the construction process of a building. Establishing a comparative life cycle analysis between a container-house, a concrete dwelling and a timber residence may provide further insight in the understanding of the patterns related to the energy consumption and CO2 emissions in the residential sector when container houses are used. Such understanding may be useful in developing more efficient houses. The household data for each project has been calculated and this information has been used to explore the drivers of the energy consumption and CO2 emissions through the lifespan of every example. Three case studies have been selected for this comparative life cycle analysis. Selection criteria are based upon relationships between container-architecture's main features that match with some ideals of the Modern Movement in Architecture: the construction of prefabricated and mass produced elements, modularity and formal simplicity. Emphasis is put on numerical relationships related to shipping steel-boxes, size and form, scale, material properties, density, site location and climatic conditions. The three case studies are: for steel, the Stevens House, which is the first container house constructed in Wellington, for concrete, a single dwelling unit of the Jellicoe Towers, a post-WWII model of Modern Architecture in New Zealand built in the late 1960s and for timber, the Firth House, a wooden-based house designed by Cedric Firth which was inspired by the works of Walter Gropius and Konrad Wachsmann, German figures of the Modern Movement in Architecture. The life cycle energy consumption is given by using two different software packages. The first is known as Gabi, which has a European database. It is useful to calculate the total amount of energy used and the amount of CO2 released into the atmosphere by the different projects through their lifespan. The second program is New Zealand software known as ALF 3 (Annual Loss Factor 3), developed under BRANZ (Building Research Association of New Zealand) which is useful to calculate space heating energy. The outcome of the research shows that the usage of shipping containers in buildings leads to a major consumption of energy (per square metre) and release of CO2 into the atmosphere (per square metre) in comparison with traditional concrete and timber buildings.</p>


2021 ◽  
pp. 108159
Author(s):  
Mehrdad Rabani ◽  
Habtamu Bayera Madessa ◽  
Malin Ljungström ◽  
Lene Aamodt ◽  
Sandra Løvvold ◽  
...  

Author(s):  
Cassandra Telenko ◽  
Carolyn C. Seepersad ◽  
Michael E. Webber

Design for environment principles and guidelines help designers create greener products during the early stages of design when life cycle analysis is not feasible. However, the available guidelines are not exhaustive and a general methodology for discovering guidelines has yet to be proposed. In this paper, a method for identifying green design guidelines is presented, which aims to fulfill the need for more comprehensive guidelines. The method combines typical aspects of product design, such as customer needs analysis, with reverse engineering and life cycle analysis. Although reverse engineering is commonly applied to studies of disassembly and recyclability, the methodology and case study herein show how reverse engineering can be applied to areas of product utilization and energy consumption in particular. A general description of the methodology helps readers apply it to their own studies, and a case study of electric kettles shows how each step of the method was applied to reveal four new design guidelines.


2021 ◽  
Vol 16 (2) ◽  
pp. 287-297
Author(s):  
Azzedine Dakhia ◽  
Noureddine Zemmouri

This work assesses the environmental impact generated by an office building in arid region throughout its life cycle (cradle to grave), by means of a Life Cycle Assessment (LCA). This study focuses on a comparison of different external wall systems that are conventionally used in building. With recycled materials and thermal insulation system, it’s possible to reduce demand of energy consumption, evaluate their environmental indicators impacts, and also reduce them, throughout the building life cycle. In doing so, this work can contribute not only to control energy, long-term economic growth, but also to address pressing social issues, and mainly environmental impacts. We use an environmental analysis with a thermal dynamic simulation, to test the hypothesis on a data base of hot and dry climate of Biskra city. The last part consists of a technical approach, indicating the economy is the use of ecological and recycled materials. The results of this study show that the exterior insulation system, obtained the best environmental scores, being 30% less than the interior insulation system and 50% less than the distributed insulation system. Also, recycled materials save energy in their manufacture, and building energy consumption for its use and have a reduced building impact on the environment throughout its life cycle (cradle to grave). This work shows how LCA application is not only feasible, but recommended because it is a decision support tool in the search for sustainability and make use of recycled materials.


2021 ◽  
Author(s):  
◽  
Alejo Andres Palma Olivares

<p>The aim of this research is to establish whether container architecture in the residential sector of New Zealand is energy efficient in contrast with traditional houses built by different building materials. This study is part of a discussion on sustainability in prefabricated architecture. The term "container architecture" has not been assessed in depth yet. On the other hand, the concept of prefabrication in architecture is well documented. Despite the large amount of empirical knowledge, little is known about container architecture in the residential sector. A comparative life cycle analysis has been undertaken by emphasising three different approaches: Energy consumption, CO2 emissions and the thermal performance of three conventional building materials (steel, concrete and timber-based structures) in the residential sector of New Zealand. Results from international studies of the Life Cycle Analysis (LCA) method in houses have been mixed. A number of studies suggest the importance of this methodology in order to achieve benefits in the reduction of energy consumption and CO2 emissions. Most of these studies agree that operational energy is the highest driver of both the energy consumed and CO2 emitted. However, some studies disagree with this approach due to the assumption made in the underestimation of the energy used in the transport of raw materials in the construction process of a building. Establishing a comparative life cycle analysis between a container-house, a concrete dwelling and a timber residence may provide further insight in the understanding of the patterns related to the energy consumption and CO2 emissions in the residential sector when container houses are used. Such understanding may be useful in developing more efficient houses. The household data for each project has been calculated and this information has been used to explore the drivers of the energy consumption and CO2 emissions through the lifespan of every example. Three case studies have been selected for this comparative life cycle analysis. Selection criteria are based upon relationships between container-architecture's main features that match with some ideals of the Modern Movement in Architecture: the construction of prefabricated and mass produced elements, modularity and formal simplicity. Emphasis is put on numerical relationships related to shipping steel-boxes, size and form, scale, material properties, density, site location and climatic conditions. The three case studies are: for steel, the Stevens House, which is the first container house constructed in Wellington, for concrete, a single dwelling unit of the Jellicoe Towers, a post-WWII model of Modern Architecture in New Zealand built in the late 1960s and for timber, the Firth House, a wooden-based house designed by Cedric Firth which was inspired by the works of Walter Gropius and Konrad Wachsmann, German figures of the Modern Movement in Architecture. The life cycle energy consumption is given by using two different software packages. The first is known as Gabi, which has a European database. It is useful to calculate the total amount of energy used and the amount of CO2 released into the atmosphere by the different projects through their lifespan. The second program is New Zealand software known as ALF 3 (Annual Loss Factor 3), developed under BRANZ (Building Research Association of New Zealand) which is useful to calculate space heating energy. The outcome of the research shows that the usage of shipping containers in buildings leads to a major consumption of energy (per square metre) and release of CO2 into the atmosphere (per square metre) in comparison with traditional concrete and timber buildings.</p>


2014 ◽  
Vol 6 (4) ◽  
pp. 407-413
Author(s):  
Mantas Kijevičius ◽  
Kęstutis Valančius

The paper analyses the insulation expediency of the external envelopes of the building with reference to 2E (energy – primary energy consumption and environmental – CO2 emissions) criteria and presents an overview of thermal insulation and studies on other structural elements based on life cycle analysis. The object of research is a typical residential building. The article determines different insulation materials of external envelopes, primary energy consumption and CO2 emissions by insulating walls from F to B and from B to A ++ class. Graphical interpretation shows primary energy, CO2 and the payback period of 60 years. Also, the paper considers primary energy and CO2 emissions distributed at various life cycle stages. Straipsnyje nagrinėjamas pastato išorinių atitvarų apšiltinimo tikslingumas 2E (energiniu ­– pirminės energijos sąnaudų ir ekologiniu – CO2 – išmetalų) kriterijų požiūriu. Apžvelgti teoriniai darbai, kuriuose statybinės medžiagos nagrinėjamos pirminės energijos ir poveikio aplinkai vertinimo (PAV) požiūriu. Tyrimo objektu pasirinktas gyvenamosios paskirties pastatas. Nagrinėjamos skirtingos išorinių atitvarų termoizoliacinės medžiagos, nustatomi pirminės energijos kiekiai ir CO2 išmetalai apšiltinant atitvaras nuo F iki B ir nuo B iki A++ pastato energinės klasės. Vertinama pagal gyvavimo ciklo analizės metodiką. Pateikiama grafinė interpretacija, rodanti sutaupytos pirminės energijos ir CO2 kiekius per 60 metų laikotarpį, identifikuojamos energetiškai ir ekologiškai priimtiniausios termoizoliacinės medžiagos pastatams apšiltinti.


Sign in / Sign up

Export Citation Format

Share Document