Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics

2004 ◽  
Vol 66 (5) ◽  
pp. 1009-1026 ◽  
Author(s):  
D BORTZ
2014 ◽  
Vol 6 ◽  
pp. 169064 ◽  
Author(s):  
Stefano Mauro ◽  
Stefano Pastorelli ◽  
Tharek Mohtar

This paper reports how a numerical controlled machine axis was studied through a lumped parameter model. Firstly, a linear model was derived in order to apply a modal analysis, which estimated the first mechanical frequency of the system as well as its damping coefficients. Subsequently, a nonlinear system was developed by adding friction through experimentation. Results were validated through the comparison with a commercial servoaxis equipped with a Siemens controller. The model was then used to evaluate the effect of the stiffness of the structural parts of the axis on its first natural frequency. It was further used to analyse precision, energy consumption, and axis promptness. Finally a cost function was generated in order to find an optimal value for the main proportional gain of the position loop.


Author(s):  
Samira Jamalian ◽  
James E. Moore ◽  
Christopher D. Bertram ◽  
Will Richardson

The lymphatic system is responsible for vital functions in the human body. In particular, it plays an important role in the immune system mechanism whereby undesirable elements are destroyed in the lymph nodes. But cancer cells also spread via the lymphatic system. The system maintains fluid and protein balance by gathering approximately 4 L/day of interstitial fluid and returning it to the venous system. Lymphedema, an ailment of the system for which there is no known cure, primarily affects cancer patients who have undergone lymph node dissection [1]. To understand how to treat such pathologies of the lymphatic system, it is first necessary to examine its fluid flow and pumping mechanisms quantitatively.


2013 ◽  
Vol 305 (12) ◽  
pp. H1709-H1717 ◽  
Author(s):  
Samira Jamalian ◽  
Christopher D. Bertram ◽  
William J. Richardson ◽  
James E. Moore

Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13–14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.


Author(s):  
Gilmar Ferreira Da Silva Filho ◽  
Rafael Alves Bonfim De Queiroz ◽  
Luis Paulo Da Silva Barra ◽  
Bernardo Martins Rocha

Cardiovascular system is intensely researched to understand the intricate nature of the heart and blood circulation. Nowadays we have well evolved computational models which are useful in many ways for the understanding and analysis of physiological and pathophysiological conditions of the heart. However, the practical use of these models and their results for clinical decision making in specific patients is not straightforward. In this context, models predictions must be accurate and reliable, which can be assessed by quantification of uncertainties in the predictions and sensitivity analysis of the input parameters. Lumped parameter models for the cardiovascular physiology can provide useful data for clinical patient-specific applications. However, the accurate estimation of all parameters of these models is a difficult task, and therefore the determination of the most sensitive parameters is an important step towards the calibration of these models. We perform uncertainty quantification and sensitivity analysis based on generalised polynomial chaos expansion in a lumped parameter model for the systemic circulation. The objective of this work is to verify the effect of uncertainties from input parameters on the predictions of the models and to identify parameters that contribute significantly to relevant quantities of interest. Numerical experiments are performed and results indicate a set of the most relevant parameters in the context of these models.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750116 ◽  
Author(s):  
R. Gul ◽  
S. Bernhard

The basic theme of this work is to identify the optimal measurement locations for pressure and flow in the systemic circulation to detect aortic stenoses and aneurysms in early stages of a disease. For this purpose, a linear elastic lumped parameter model of the fluid dynamical simulator, major arterial cardiovascular simulator (MACSim), is considered and global sensitivity analysis is applied to identify the better measurement locations for pressure and flow in the systemic circulation. The obtained results of sensitivity analysis provide insight that enable the experimentalists to optimize their experimental setups for detecting aortic stenoses and aneurysms using parameter estimation process. From the results, it is observed that the stenosis in the thoracic aorta can be identified from both pressure and flow at the location itself, nearby nodes, aorta ascendens, arcus aorta, arteria subclavia and arteria axillaris. On the other hand, the preferable measurement locations for abdominal aneurysms are locations themselves, nearby nodes and left/right leg of the body.


2020 ◽  
Vol 48 (12) ◽  
pp. 2870-2886
Author(s):  
Mehran Mirramezani ◽  
Shawn C. Shadden

Sign in / Sign up

Export Citation Format

Share Document