scholarly journals Land cover change effects on land surface temperature trends in an African urbanizing dryland region

2019 ◽  
Vol 4 ◽  
pp. 100029
Author(s):  
Felicia O. Akinyemi ◽  
Mphoentle Ikanyeng ◽  
Javier Muro
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9115 ◽  
Author(s):  
Muhammad Amir Siddique ◽  
Liu Dongyun ◽  
Pengli Li ◽  
Umair Rasool ◽  
Tauheed Ullah Khan ◽  
...  

Rapid urbanization is changing the existing patterns of land use land cover (LULC) globally, which is consequently increasing the land surface temperature (LST) in many regions. The present study is focused on estimating current and simulating future LULC and LST trends in the urban environment of Chaoyang District, Beijing. Past patterns of LULC and LST were identified through the maximum likelihood classification (MLC) method and multispectral Landsat satellite images during the 1990–2018 data period. The cellular automata (CA) and stochastic transition matrix of the Markov model were applied to simulate future (2025) LULC and LST changes, respectively, using their past patterns. The CA model was validated for the simulated and estimated LULC for 1990–2018, with an overall Kappa (K) value of 0.83, using validation modules in IDRISI software. Our results indicated that the cumulative changes in built-up to vegetation area were 74.61 km2 (16.08%) and 113.13 km2 (24.38%) from 1990 to 2018. The correlation coefficient of land use and land cover change (LULCC), including vegetation, water bodies and built-up area, had values of r =  − 0.155 (p > 0.005), −0.809 (p = 0.000), and 0.519 (p > 0.005), respectively. The results of future analysis revealed that there will be an estimated 164.92 km2 (−12%) decrease in vegetation area, while an expansion of approximately 283.04 km2 (6% change) will occur in built-up areas from 1990 to 2025. This decrease in vegetation cover and expansion of settlements would likely cause a rise of approximately ∼10.74 °C and ∼12.66 °C in future temperature, which would cause a rise in temperature (2025). The analyses could open an avenue regarding how to manage urban land cover patterns to enhance the resilience of cities to climate warming. This study provides scientific insights for environmental development and sustainability through efficient and effective urban planning and management in Beijing and will also help strengthen other research related to the UHI phenomenon in other parts of the world.


2021 ◽  
Vol 12 (2) ◽  
pp. 66-74
Author(s):  
Ricky Anak Kemarau ◽  
Oliver Valentine Eboy

Wetlands are a vital component of land cover in reducing impacts caused by urban heat effects and climate change. Remote sensing technology provides historical data that can study the impact of development on the environment and local climate. The studies of wetland in reducing Land Surface Temperature (LST) in a tropical climate are still lacking. The objective of the study is to examine the influence of land cover change wetland and vegetation on land surface temperature between the years 1988 and 2019. First of all, step, pre-processing, namely geometric correction, atmosphere correction, and radiometric correction, were performed before retrieval of the LST dataset from thermal band Landsat 5 and 8. Then, Iso Cluster, unsupervised was chosen to produce the land cover map for 1988 and 2019. Geographical Information System (GIS) technology was utilized to determine changes to land cover and LST change between the years 1988 and 2019. With GIS technology, a study of the impact of wetland deforestation on local temperatures at a local scale was carried out. Next to that, correlations between LST and the wetland were analyzed. The results indicated the different land cover between the years 1988 and 2019. The areas of land cover for wetland and vegetation decrease and while area of urban increased. The land cover changed the influences of LST significantly in the study area. The LST increased with the decreasing in areas wetland areas for every 5-kilometer square (km²) wetland lost an increase in 1-degree Celsius of LS was estimated. The size of wetland influence on LST was significant. Wetland and vegetation function in reducing the urban heat island effect was vital in providing a comfortable environment to the Kuching population and indirectly reduce the demand for power energy.


Author(s):  
V. K. M. Del Mundo ◽  
C. L. Tiburan Jr.

Abstract. Land Surface Temperature (LST) is said to be affected by frequent changes in the land cover. Over the years, the immediate environs of Mount Makiling Forest Reserve (MMFR) have experienced such kind of change due to rapid economic growth of the area that also led to the expansion of urban centers. The study utilized Landsat imageries to determine the possible effects of land cover change on surface temperature using the integration of remote sensing and GIS technologies. Initially, the multispectral bands were radiometrically corrected using Dark Object Subtraction (DOS) while the thermal bands were corrected using Land Surface Emissivity (LSE). After these corrections were applied, the images were classified using supervised image classification technique where seven land cover types have been identified. The classified images were then validated using 200 reference data and this revealed an overall accuracy of 87.5% and 86.0% for the May 2003 and July 2015 images, respectively. Results showed that changes in land cover resulted to a significant change in Land Surface Temperature (LST). The LST in 2003 (16.49°C – 40.44°C) was found higher than that of 2015 which was observed between 13.35°C and 33.83°C only. The reason behind this is the increase in green spaces from 2003 to 2015. Among the major land cover types, forest lands exhibited the lowest mean surface temperature for both years having 27.27°C in 2003 and 21.35°C in 2015 while built-up areas had the highest surface temperature having 32.60°C in 2003 and 26.00°C in 2015.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Rosana Amaral Carrasco ◽  
Mayara Maezano Faita Pinheiro ◽  
José Marcato Junior ◽  
Rejane Ennes Cicerelli ◽  
Paulo Antônio Silva ◽  
...  

2017 ◽  
Vol 124 ◽  
pp. 119-132 ◽  
Author(s):  
Duy X. Tran ◽  
Filiberto Pla ◽  
Pedro Latorre-Carmona ◽  
Soe W. Myint ◽  
Mario Caetano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document