Noisy Dispersion Curve Picking (NDCP): A Matlab package for group velocity dispersion picking of seismic surface waves

2019 ◽  
Vol 133 ◽  
pp. 104315
Author(s):  
Iván Granados ◽  
Marco Calò ◽  
Valente Ramos
Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 677-684 ◽  
Author(s):  
Helle A. Pedersen ◽  
Jérôme I. Mars ◽  
Pierre‐Olivier Amblard

Surface waves are increasingly used for shallow seismic surveys—in particular, in acoustic logging, environmental, and engineering applications. These waves are dispersive, and their dispersion curves are used to obtain shear velocity profiles with depth. The main obstacle to their more widespread use is the complexity of the associated data processing and interpretation of the results. Our objective is to show that energy reassignment in the time–frequency domain helps improve the precision of group velocity measurements of surface waves. To show this, full‐waveform seismograms with added white noise for a shallow flat‐layered earth model are analyzed by classic and reassigned multiple filter analysis (MFA). Classic MFA gives the expected smeared image of the group velocity dispersion curve, while the reassigned curve gives a very well‐constrained, narrow dispersion curve. Systematic errors from spectral fall‐off are largely corrected by the reassignment procedure. The subsequent inversion of the dispersion curve to obtain the shear‐wave velocity with depth is carried out through a procedure combining linearized inversion with a nonlinear Monte Carlo inversion. The diminished uncertainty obtained after reassignment introduces significantly better constraints on the earth model than by inverting the output of classic MFA. The reassignment is finally carried out on data from a shallow seismic survey in northern Belgium, with the aim of determining the shear‐wave velocities for seismic risk assessment. The reassignment is very stable in this case as well. The use of reassignment can make dispersion measurements highly automated, thereby facilitating the use of surface waves for shallow surveys.


2020 ◽  
Vol 91 (4) ◽  
pp. 2234-2246
Author(s):  
Hang Li ◽  
Jianqiao Xu ◽  
Xiaodong Chen ◽  
Heping Sun ◽  
Miaomiao Zhang ◽  
...  

Abstract Inversion of internal structure of the Earth using surface waves and free oscillations is a hot topic in seismological research nowadays. With the ambient noise data on seismically quiet days sourced from the gravity tidal observations of seven global distributed superconducting gravimeters (SGs) and the seismic observations for validation from three collocated STS-1 seismometers, long-period surface waves and background free oscillations are successfully extracted by the phase autocorrelation (PAC) method, respectively. Group-velocity dispersion curves at the frequency band of 2–7.5 mHz are extracted and compared with the theoretical values calculated with the preliminary reference Earth model. The comparison shows that the best observed values differ about ±2% from the corresponding theoretical results, and the extracted group velocities of the best SG are consistent with the result of the collocated STS-1 seismometer. The results indicate that reliable group-velocity dispersion curves can be measured with the ambient noise data from SGs. Furthermore, the fundamental frequency spherical free oscillations of 2–7 mHz are also clearly extracted using the same ambient noise data. The results in this study show that the SG, besides the seismometer, is proved to be another kind of instrument that can be used to observe long-period surface waves and free oscillations on seismically quiet days with a high degree of precision using the PAC method. It is worth mentioning that the PAC method is first and successfully introduced to analyze SG observations in our study.


2021 ◽  
Author(s):  
Pankaj Kumar ◽  
Pratyush Anand ◽  
Dibakar Ghosal ◽  
Pabitra Singha

<p>The Amsterdam-St. Paul (ASP) island complex is a manifestation of interaction between the South-East Indian Ridge (SEIR) and the ASP mantle plume, which was formed ~10 Ma. Very few geophysical studies have been conducted over the ASP island complex and therefore we have limited information about the island so far. We performed an integrated geophysical approach using gravity, magnetic study along with the joint inversion of Ps receiver function and Rayleigh wave group velocity dispersion curve to determine the crustal architecture and Moho variation in the region. The result of integrated gravity-magnetic modeling revealed that the island complex is associated with three crustal layers beneath the sedimentary strata. Inversion of Rayleigh wave group velocity dispersion curve accounts for vertical shear wave velocity average which supported the layered velocity profile. The results revealed that magnetic material (Mid oceanic ridge basalt/Flood basalt) has carpeted the entire island causing high magnetic anomaly of -1000 to 1500 nT, which is generated by gradual accumulation of a thick pile of magnetic material of normal as well as reverse polarity. The results by integrated Gravity-magnetic model suggest that crust beneath the island is suggested to be highly affected by volcanic activity (Mantle Plume/Ridge) and is underlain by high-density underplated material. The results further suggest that SEIR has less role for the outpoured magmatic activity. Integrated Gravity-magnetic model show that Moho is variable beneath the island complex and lies in the range of ~12-17 km. Further results by joint inversion of Ps receiver function and Rayleigh wave group velocity dispersion curve for the station (AIS : Nouvelle Amsterdam - TAAF, France) suggest Moho depth of ~14 km beneath the Amsterdam island and is well in agreement with the gravity-magnetic studies. The result clearly indicates that ASP island complex is highly affected by the ASP plume activity and was evolved during the ridge-plume interaction.</p>


2010 ◽  
Vol 114 (1151) ◽  
pp. 49-56 ◽  
Author(s):  
H. Gao ◽  
J. L. Rose

Abstract Ultrasonic guided wave techniques have great potential for structural health monitoring applications. Appropriate mode and frequency selection is the basis for achieving optimised damage monitoring performance. In this paper, several important guided wave mode attributes are introduced in addition to the commonly used phase velocity and group velocity dispersion curves while using the general corrosion problem as an example. We first derive a simple and generic wave excitability function based on the theory of normal mode expansion and the reciprocity theorem. A sensitivity dispersion curve is formulated based on the group velocity dispersion curve. Both excitability and sensitivity dispersion curves are verified with finite element simulations. Finally, a goodness dispersion curve concept is introduced to evaluate the tradeoffs between multiple mode selection objectives based on the wave velocity, excitability and sensitivity.


1999 ◽  
Vol 66 (2) ◽  
pp. 507-513 ◽  
Author(s):  
T.-T. Wu ◽  
Y.-Y. Chen

This paper presents the results on the utilization of a wavelet transform to study the dispersion of laser-generated surface waves in an epoxy-bonded copper-aluminum layered specimen with and without unbond areas. Laser ultrasonic experiments based on the point-source/point-receiver (PS/PR) technique were undertaken to measure surface wave signals in a layered specimen. The wavelet transform with a Morlet wavelet function was adopted to analyze the group velocity dispersion of the surface wave signals. A novel hybrid formula for group velocity dispersion is proposed for measurements across unbond regions. Results and data obtained are in good agreement with calculated and experimental dispersion curves. The general behavior of the group velocity dispersion for different measurement, configurations can be utilized to differentiate the unbond regions in a layered structure.


Sign in / Sign up

Export Citation Format

Share Document