Direct optimization of BPX preconditioners

2022 ◽  
Vol 402 ◽  
pp. 113811
Author(s):  
Ivan Oseledets ◽  
Vladimir Fanaskov
Keyword(s):  
Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


Author(s):  
Russell R. Barton ◽  
Kwok-Leung Tsui

Abstract A product contributes to yield if all of its performance functions fall within their upper and/or lower limits. For example, a piston connecting rod may be required to provide rigidity along several axes. The actual connecting rod deflection will vary, depending on variations in the materials and forging conditions, but the deflection must remain less than an upper limit. Designing for maximum yield for multivariate performance limits is a difficult task. Direct optimization may require excessive computing resources. We discuss two efficient methods for yield improvement: ‘performance centering’ and a method based on Taguchi’s ‘parameter design’ philosophy. Both are shown to be motivated by the Chebychev inequality. It is important to remember that these are approximate methods. An example shows that they may produce sub-optimal yield, even when the random components of the performance functions are independent and identically distributed.


2013 ◽  
Vol 278-280 ◽  
pp. 139-142
Author(s):  
Xiang Bian ◽  
Zong De Fang ◽  
Kun Qin ◽  
Lifei Lian ◽  
Bao Yu Zhang

Usually the gear modification is a main measure to reduce the vibration and noise of the gears, but in view of the complexity of the gear modification, topology optimization method was used to optimize the structure of the gear. The minimum volume was set as the direct optimization goal. To achieve the target of reducing contact stress, tooth root bending stress and improving flexibility, the upper bound of the stress and lower bound of the flexibility were set appropriately, thus realizing multi-objective optimization indirectly. A method for converting topology result into parametric CAD model which can be modified was presented, by fitting the topology result with simple straight lines and arcs, the model can be smoothed automatically, after further regulating, the geometry reconstruction was finished. After topology optimization, the resulting structure and properties of the gear are consistent with cavity gear. While reducing the weight of the gear, the noise can be reduced and its life would be extended through increasing flexibility and reducing tooth root stress.


Sign in / Sign up

Export Citation Format

Share Document