scholarly journals Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid

2007 ◽  
Vol 53 (3-4) ◽  
pp. 605-623 ◽  
Author(s):  
Yoshihiro Shibata ◽  
Koumei Tanaka
1993 ◽  
Vol 115 (3) ◽  
pp. 302-312 ◽  
Author(s):  
J. H. Terhune ◽  
K. Karim-Panahi

The free vibration of cylindrical shells filled with a compressible viscous fluid has been studied by numerous workers using the linearized Navier-Stokes equations, the fluid continuity equation, and Flu¨gge ’s equations of motion for thin shells. It happens that solutions can be obtained for which the interface conditions at the shell surface are satisfied. Formally, a characteristic equation for the system eigenvalues can be written down, and solutions are usually obtained numerically providing some insight into the physical mechanisms. In this paper, we modify the usual approach to this problem, use a more rigorous mathematical solution and limit the discussion to a single thin shell of infinite length and finite radius, totally filled with a viscous, compressible fluid. It is shown that separable solutions are obtained only in a particular gage, defined by the divergence of the fluid velocity vector potential, and the solutions are unique to that gage. The complex frequency dependence for the transverse component of the fluid velocity field is shown to be a result of surface interaction between the compressional and vortex motions in the fluid and that this motion is confined to the boundary layer near the surface. Numerical results are obtained for the first few wave modes of a large shell, which illustrate the general approach to the solution. The axial wave number is complex for wave propagation, the imaginary part being the spatial attenuation coefficient. The frequency is also complex, the imaginary part of which is the temporal damping coefficient. The wave phase velocity is related to the real part of the axial wave number and turns out to be independent of frequency, with numerical value lying between the sonic velocities in the fluid and the shell. The frequency dependencies of these parameters and fluid velocity field mode shapes are computed for a typical case and displayed in non-dimensional graphs.


Author(s):  
Abdelmadjid Tadjadit ◽  
Boualem Tiliouine

Analytical expressions for the determination of hydro-seismic forces acting on a rigid dam with irregular upstream face geometry in presence of a compressible viscous fluid are derived through a linear combination of the natural modes of water in the reservoir based on a boundary method making use of complete sets of complex T-functions.Analytical expressions for the determination of hydro-seismic forces acting on a rigid dam with irregular upstream face geometry in presence of a compressible viscous fluid are derived through a linear combination of the natural modes of water in the reservoir based on a boundary method making use of complete sets of complex T-functions. The formulas obtained for distributions of both shear forces and overturning moments are simple, computationally effective and useful for the preliminary design of dams. They show clearly the separate and combined effects of compressibility and viscosity of water. They also have the advantage of being able to cover a wide range of excitation frequencies even beyond the cut-off frequencies of the natural modes of the reservoir. Key results obtained using the proposed analytical expressions of the hydrodynamic forces are validated using numerical and experimental solutions published for some particular cases available in the specialized literature.


It is shown that the equations of an unsteady compressible flow in the ( x, y )-plane, which is expressible in terms of the two variables x/t and y/t only, can be reduced to those of a steady compressible flow with a non-conservative field of external forces and a field of sinks. The steady-flow problems of this type, which correspond to the diffraction or reflexion of a plane shock travelling parallel to a rigid wall and reaching a corner, are discussed qualitatively. It is shown that, under certain conditions, there are regions in the corresponding steady flows which are entirely supersonic and for which a simple solution can be given without determining the whole field of flow. No complete solution for the whole field of flow has yet been given. In the diffraction, at a convex corner, of certain strong shocks, it is shown that there can be an area of Prandtl-Meyer flow, uniformly increasing with time, and that the upper limit to which it can extend is calculable as a characteristic curve in the corresponding steady flow. In the case of regular reflexion beyond a concave comer, or reflexion at a concave corner which gives rise to a reflected shock passing through the corner, it is shown that there can be areas of uniform flow, uniformly increasing with time, and that the upper limits to which they can extend are arcs of circles, which appear as sonic curves in the corresponding steady flows.


1958 ◽  
Vol 4 (1) ◽  
pp. 81-86 ◽  
Author(s):  
R. B. Payne

A numerical solution has been obtained for the starting flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 100. The method used is the step-by-step forward integration in time of Helmholtz's vorticity equation. The advantage of working with the vorticity is that calculations can be confined to the region of non-zero vorticity near the cylinder.The general features of the flow, including the formation of the eddies attached to the rear of the cylinder, have been determined, and the drag has been calculated. At R = 40 the drag on the cylinder decreases with time to a value very near that for the steady flow.


Sign in / Sign up

Export Citation Format

Share Document