scholarly journals Analysis and numerical simulation of positive and dead-core solutions of singular two-point boundary value problems

2008 ◽  
Vol 56 (7) ◽  
pp. 1820-1837 ◽  
Author(s):  
Svatoslav Staněk ◽  
Gernot Pulverer ◽  
Ewa B. Weinmüller
2021 ◽  
Vol 10 (1) ◽  
pp. 94-126
Author(s):  
Basem Attili

This article considers the numerical simulation of fuzzy two-point boundary value problems (FBVP) using general linear method (GLM). The author derived the method, which is a combination of a Runge-Kutta type method and multi-step method. It is originally designed to solve initial value problems. It requires fewer function evaluations than the traditional Runge-Kutta methods making it computationally more efficient in achieving the required accuracy. The author will utilize the combination of the GLM with initial value methods to solve the linear fuzzy BVP's and a shooting-like method for the nonlinear cases. Numerical testing and simulation of several examples, considered by other authors, will be presented to show the efficiency of the proposed method.


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ji Lin ◽  
Yuhui Zhang ◽  
Chein-Shan Liu

AbstractFor nonlinear third-order three-point boundary value problems (BVPs), we develop two algorithms to find solutions, which automatically satisfy the specified three-point boundary conditions. We construct a boundary shape function (BSF), which is designed to automatically satisfy the boundary conditions and can be employed to develop new algorithms by assigning two different roles of free function in the BSF. In the first algorithm, we let the free functions be complete functions and the BSFs be the new bases of the solution, which not only satisfy the boundary conditions automatically, but also can be used to find solution by a collocation technique. In the second algorithm, we let the BSF be the solution of the BVP and the free function be another new variable, such that we can transform the BVP to a corresponding initial value problem for the new variable, whose initial conditions are given arbitrarily and terminal values are determined by iterations; hence, we can quickly find very accurate solution of nonlinear third-order three-point BVP through a few iterations. Numerical examples confirm the performance of the new algorithms.


Sign in / Sign up

Export Citation Format

Share Document