Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells

2009 ◽  
Vol 273 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Qin-Chuan Liang ◽  
Hua Xiong ◽  
Zhen-Wei Zhao ◽  
Dong Jia ◽  
Wei-Xin Li ◽  
...  
2019 ◽  
Author(s):  
Ting Deng ◽  
Michael Daube ◽  
Alex Hajnal ◽  
Evelyn Lattmann

AbstractCell invasion allows cells to migrate across compartment boundaries formed by basement membranes. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells.Anchor cell (AC) invasion in C. elegans is an excellent in vivo model to study the regulation of cell invasion during development. Here, we have examined the function of egl-43, the homolog of the human Evi1 proto-oncogene (also called MECOM), in the invading AC. egl-43 plays a dual role in this process, firstly by imposing a G1 cell cycle arrest to prevent AC proliferation, and secondly, by activating pro-invasive gene expression. We have identified the AP-1 transcription factor fos-1 and the Notch homolog lin-12 as critical egl-43 targets. A positive feedback loop between fos-1 and egl-43 induces pro-invasive gene expression in the AC, while repression of lin-12 Notch expression by egl-43 ensures the G1 cell cycle arrest necessary for invasion. Reducing lin-12 levels in egl-43 depleted animals restored the G1 arrest, while hyperactivation of lin-12 signaling in the differentiated AC was sufficient to induce proliferation.Taken together, our data have identified egl-43 Evi1 as a critical factor coordinating cell invasion with cell cycle arrest.Author summaryCells invasion is a fundamental biological process that allows cells to cross compartment boundaries and migrate to new locations. Aberrant cell invasion is a first step during the formation of metastases by malignant cancer cells.We have investigated how a specialized cell in the Nematode C. elegans, the so-called anchor cell, can invade into an adjacent epithelium. Our work has identified an oncogenic transcription factor that controls the expression of specific target genes necessary for cell invasion, and at the same time inhibits the proliferation of the invading anchor cell.These findings shed light on the mechanisms, by which cells decide whether to proliferate or invade.


Neoplasia ◽  
2008 ◽  
Vol 10 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Hua Xiong ◽  
Zhi-Gang Zhang ◽  
Xiao-Qing Tian ◽  
Dan-Feng Sun ◽  
Qin-Chuan Liang ◽  
...  

1996 ◽  
Vol 16 (10) ◽  
pp. 5288-5301 ◽  
Author(s):  
R A Ramos ◽  
Y Nishio ◽  
A C Maiyar ◽  
K E Simon ◽  
C C Ridder ◽  
...  

By genetic correlation with the growth-suppressible phenotype and direct functional tests, we demonstrate that the glucocorticoid-stimulated expression of the CCAAT/enhancer-binding protein alpha (C/EBP alpha) transcription factor is required for the steroid-mediated G1 cell cycle arrest of minimal-deviation rat hepatoma cells. Comparison of C/EBP alpha transcript and active protein levels induced by the synthetic glucocorticoid dexamethasone in glucocorticoid growth-suppressible (BDS1), nonsuppressible receptor-positive (EDR1) and nonsuppressible receptor-deficient (EDR3) hepatoma cell proliferative variants revealed that the stimulation of C/EBP alpha expression is a rapid, glucocorticoid receptor-mediated response associated with the G1 cell cycle arrest. Consistent with the role of C/EBP alpha as a critical intermediate in the growth suppression response, maximal induction of transcription factor mRNA occurred within 2 h of dexamethasone treatment whereas maximal inhibition of [3H] thymidine incorporation was observed 24 h after steroid treatment. As a direct functional approach, ablation of C/EBP alpha protein expression and DNA-binding activity by transfection of an antisense C/EBP alpha expression vector blocked the dexamethasone-induced G1 cell cycle arrest of hepatoma cells but did not alter general glucocorticoid responsiveness. Transforming growth factor beta induced a G1 cell cycle arrest in C/EBP alpha antisense transfected cells, demonstrating the specific involvement of C/EBP alpha in the glucocorticoid growth suppression response. Constitutive expression of a conditionally activated form of C/EBP alpha caused a G1 cell cycle arrest of BDS1 hepatoma cells in the absence of glucocorticoids. In contrast, overexpression of C/EBP beta or C/EBP delta had no effect on hepatoma cell growth. Taken together, these results demonstrate that the steroid-induced expression of C/EBP alpha is necessary to mediate the glucocorticoid G1 cell cycle arrest of rat hepatoma cells and implicates a role for this transcription factor in the growth control of liver-derived epithelial tumor cells.


2016 ◽  
Vol 13 (2) ◽  
pp. 1007-1013 ◽  
Author(s):  
Aisha Maimaitili ◽  
Zunhua Shu ◽  
Xiaojiang Cheng ◽  
Kadeer Kaheerman ◽  
Alifu Sikandeer ◽  
...  

Oral Diseases ◽  
2010 ◽  
Vol 16 (3) ◽  
pp. 305-309 ◽  
Author(s):  
H Kasai ◽  
K Nakashima ◽  
M Yokota ◽  
T Nishihara

Sign in / Sign up

Export Citation Format

Share Document