RIP1 and RIP3 contribute to shikonin-induced DNA double-strand breaks in glioma cells via increase of intracellular reactive oxygen species

2017 ◽  
Vol 390 ◽  
pp. 77-90 ◽  
Author(s):  
Zijian Zhou ◽  
Bin Lu ◽  
Chen Wang ◽  
Zongqi Wang ◽  
Tianfei Luo ◽  
...  
2010 ◽  
Vol 84 (12) ◽  
pp. 5909-5922 ◽  
Author(s):  
Georgi Hristov ◽  
Melanie Krämer ◽  
Junwei Li ◽  
Nazim El-Andaloussi ◽  
Rodrigo Mora ◽  
...  

ABSTRACT The rat parvovirus H-1 (H-1PV) attracts high attention as an anticancer agent, because it is not pathogenic for humans and has oncotropic and oncosuppressive properties. The viral nonstructural NS1 protein is thought to mediate H-1PV cytotoxicity, but its exact contribution to this process remains undefined. In this study, we analyzed the effects of the H-1PV NS1 protein on human cell proliferation and cell viability. We show that NS1 expression is sufficient to induce the accumulation of cells in G2 phase, apoptosis via caspase 9 and 3 activation, and cell lysis. Similarly, cells infected with wild-type H-1PV arrest in G2 phase and undergo apoptosis. Furthermore, we also show that both expression of NS1 and H-1PV infection lead to higher levels of intracellular reactive oxygen species (ROS), associated with DNA double-strand breaks. Antioxidant treatment reduces ROS levels and strongly decreases NS1- and virus-induced DNA damage, cell cycle arrest, and apoptosis, indicating that NS1-induced ROS are important mediators of H-1PV cytotoxicity.


2006 ◽  
Vol 178 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Keisuke Ito ◽  
Keiyo Takubo ◽  
Fumio Arai ◽  
Hitoshi Satoh ◽  
Sahoko Matsuoka ◽  
...  

2009 ◽  
Vol 69 (23) ◽  
pp. 9083-9089 ◽  
Author(s):  
Hui Ying Zhang ◽  
Kathy Hormi-Carver ◽  
Xi Zhang ◽  
Stuart J. Spechler ◽  
Rhonda F. Souza

2015 ◽  
Vol 6 (8) ◽  
pp. 2507-2524 ◽  
Author(s):  
Annabelle L. Rodd ◽  
Katherine Ververis ◽  
Dheeshana Sayakkarage ◽  
Abdul W. Khan ◽  
Haloom Rafehi ◽  
...  

DNA double strand breaks mediated by high mass bay leaf fraction in HT-29 cells.


2019 ◽  
Author(s):  
Sarah S. Henrikus ◽  
Camille Henry ◽  
John P. McDonald ◽  
Yvonne Hellmich ◽  
Elizabeth A. Wood ◽  
...  

Under many conditions the killing of bacterial cells by antibiotics is potentiated by DNA damage induced by reactive oxygen species (ROS)1–3. A primary cause of ROS-induced cell death is the accumulation of DNA double-strand breaks (DSBs)1,4–6. DNA polymerase IV (pol IV), an error-prone DNA polymerase produced at elevated levels in cells experiencing DNA damage, has been implicated both in ROS-dependent killing and in DSBR7–15. Here, we show using single-molecule fluorescence microscopy that ROS-induced DSBs promote pol IV activity in two ways. First, exposure to the antibiotics ciprofloxacin and trimethoprim triggers an SOS-mediated increase in intracellular pol IV concentrations that is strongly dependent on both ROS and DSBR. Second, in cells that constitutively express pol IV, treatment with an ROS scavenger dramatically reduces the number of pol IV foci formed upon exposure to antibiotics, indicating a role for pol IV in the repair of ROS-induced DSBs.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Kam Pou Ha ◽  
Rebecca S. Clarke ◽  
Gyu-Lee Kim ◽  
Jane L. Brittan ◽  
Jessica E. Rowley ◽  
...  

ABSTRACT To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection. IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.


Sign in / Sign up

Export Citation Format

Share Document