Mitochondrial fission forms a positive feedback loop with cytosolic calcium signaling pathway to promote autophagy in hepatocellular carcinoma cells

2017 ◽  
Vol 403 ◽  
pp. 108-118 ◽  
Author(s):  
Qichao Huang ◽  
Haiyan Cao ◽  
Lei Zhan ◽  
Xiacheng Sun ◽  
Gang Wang ◽  
...  
2017 ◽  
Vol 60 (6) ◽  
pp. 617-626 ◽  
Author(s):  
Shuran Li ◽  
Xueyang Bao ◽  
Duowei Wang ◽  
Linjun You ◽  
Xianjing Li ◽  
...  

Oncogene ◽  
2021 ◽  
Author(s):  
Qian Feng ◽  
Shan Li ◽  
Hong-Mei Ma ◽  
Wen-Ting Yang ◽  
Peng-Sheng Zheng

AbstractThe leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is considered to be a stem cell marker in many normal tissues and promotes tissue development, regeneration, and repair. LGR6 is also related to the initiation and progression of some malignant tumors. However, the role of LGR6 in cervical cancer has not been reported. Here, immunohistochemistry and western blotting showed that LGR6 was significantly upregulated in cervical cancer, compared with the normal cervix. By analyzing The Cancer Genome Atlas database, LGR6 was found to be correlated with a poor prognosis of cervical cancer. Then, a small population of LGR6high cells isolated by using the fluorescence-activated cell sorting exhibited enhanced properties of cancer stem cells including self-renewal, differentiation, and tumorigenicity. Moreover, RNA sequencing revealed that LGR6 was correlated with the Wnt signaling pathway and TOP/FOP, reverse transcription-PCR, and western blotting further proved that LGR6 could activate the Wnt/β-catenin signaling pathway. Interestingly, LGR6 upregulated the expression of TCF7L2 by activating the Wnt/β-catenin pathway. Then, TCF7L2 combining with β-catenin in the nucleus enhanced LGR6 transcription by binding the promoter of LGR6, which further activated the Wnt signaling to form a positive feedback loop. Thus, our study demonstrated that LGR6 activated a novel β-catenin/TCF7L2/LGR6-positive feedback loop in LGR6high cervical cancer stem cells (CSCs), which provided a new therapeutic strategy for targeting cervical CSCs to improve the prognosis of cervical cancer patients.


Hepatology ◽  
2019 ◽  
Vol 70 (4) ◽  
pp. 1214-1230 ◽  
Author(s):  
Shao‐Lai Zhou ◽  
Dan Yin ◽  
Zhi‐Qiang Hu ◽  
Chu‐Bin Luo ◽  
Zheng‐Jun Zhou ◽  
...  

2015 ◽  
Vol 5 (2) ◽  
pp. e1074376 ◽  
Author(s):  
Ang Lin ◽  
Guan Wang ◽  
Huajun Zhao ◽  
Yuyi Zhang ◽  
Qiuju Han ◽  
...  

2020 ◽  
Author(s):  
Jing-hao Jia ◽  
Jing Wang ◽  
Jia-rui Yu ◽  
Peng Gao ◽  
Yan-kun Liu ◽  
...  

Abstract Background In molecular level, competing endogenous RNAs (ceRNAs) regulates other RNA transcripts through competing for shared microRNAs (miRNA). miRNA negatively regulate gene expression at the levels of mRNAs stability and translation suppression. Methods We tested the mRNA level of miR-218-5p and RNASEH1-AS1 in clinical lung squamous cell carcinoma tissues by qRT-PCR. In the exploring of the role of miR-218-5p and RNASEH1-AS1 in the malignant phenotype of NCI-H520 cells, colony formation and MTT assay were used to test the cell viability and proliferation capability, trans-well invasion and wound healing assay were performed to examine the cell migration and invasion. ChIP assay was conducted to confirm the direct interact of POU2F1 and RNASEH1-AS1 promoter. Results In this investigation, we found that LncRNA RNASEH1-AS1 is up-regulated in human lung cancer, and serves as a miRNA sponge for hsa-miR-218-5p in human lung squamous carcinoma cells. lncRNA RNASEH1-AS1 facilitates growth and motility of lung squamous carcinoma cells, while miR-218-5p does the opposite. NET1 and POU2F1 are validated as direct and functional targets of miR-218-5p. The downregulation of miR-218-5p releases the suppression of NET1 and POU2F1. POU2F1 binds directly to the lncRNA-RNASEH1-AS1 promoter and acts as transcription factor to enhance the promoter activity of RNASEH1-AS1. Conclusion Above all, the positive feedback loop of RNASEH1-AS1/ hsa-miR-218-5p/ NET1/ POU2F1 can help us to understand the regulatory mechanism behind genesis and progression of human lung squamous carcinoma, possibly providing new biomarkers for its diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document