Preparation and application of chelating polymer–mesoporous carbon composite for copper-ion adsorption

Carbon ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 1043-1049 ◽  
Author(s):  
Hyung Ik Lee ◽  
Yongju Jung ◽  
Seok Kim ◽  
Jeong Ah Yoon ◽  
Jin Hoe Kim ◽  
...  
2020 ◽  
Vol 20 (5) ◽  
pp. 3042-3046 ◽  
Author(s):  
Jukyoung Kang ◽  
Tack-Jin Kim ◽  
Jong Won Park ◽  
Kyo-Young Lee ◽  
Doh Hee Park ◽  
...  

The removal of heavy-metal ions from wastewater is an important objective from a public-health perspective, and chelating agents can be used to achieve this aim. Herein, we report the synthesis of mesoporous carbon as a chelating polymer host using nanoarchitectonics approach. Carboxymethylated polyethyleneimine, a chelating polymer, was incorporated into the mesopore walls of mesoporous carbon to create a polymer-mesoporous-carbon composite. Nitrogen adsorption– desorption experiments and scanning electron microscopy (SEM) were used to illustrate the structural advantages of the composite. Co2+ adsorption by the composite material was examined using cobalt nitrate solutions at pH 3. The study revealed that the Co2+-absorption data are most closely modeled by the Langmuir isotherm. The maximum adsorption capacity, calculated by linear regression, was determined to be about 40 mg-Co/g-composite at pH 3. The composite exhibited about a six-times higher adsorption capacity toward a dilute Co solution (12.5 ppm) than that of the pristine mesoporous carbon. In addition, the composite showed a substantially higher distribution coefficient (Kd = 1.54×105) compared to that (Kd = 2.05×102) of the mesoporous carbon. Overall, we expect that the mesoporous composite, with its large mesopores (~20 nm), will be in high demand for adsorption applications.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4349
Author(s):  
Anupriya K. Haridas ◽  
Natarajan Angulakshmi ◽  
Arul Manuel Stephan ◽  
Younki Lee ◽  
Jou-Hyeon Ahn

Sodium-ion batteries (SIBs) are promising alternatives to lithium-based energy storage devices for large-scale applications, but conventional lithium-ion battery anode materials do not provide adequate reversible Na-ion storage. In contrast, conversion-based transition metal sulfides have high theoretical capacities and are suitable anode materials for SIBs. Iron sulfide (FeS) is environmentally benign and inexpensive but suffers from low conductivity and sluggish Na-ion diffusion kinetics. In addition, significant volume changes during the sodiation of FeS destroy the electrode structure and shorten the cycle life. Herein, we report the rational design of the FeS/carbon composite, specifically FeS encapsulated within a hierarchically ordered mesoporous carbon prepared via nanocasting using a SBA-15 template with stable cycle life. We evaluated the Na-ion storage properties and found that the parallel 2D mesoporous channels in the resultant FeS/carbon composite enhanced the conductivity, buffered the volume changes, and prevented unwanted side reactions. Further, high-rate Na-ion storage (363.4 mAh g−1 after 500 cycles at 2 A g−1, 132.5 mAh g−1 at 20 A g−1) was achieved, better than that of the bare FeS electrode, indicating the benefit of structural confinement for rapid ion transfer, and demonstrating the excellent electrochemical performance of this anode material at high rates.


2013 ◽  
Vol 552 ◽  
pp. 60-64 ◽  
Author(s):  
Xueyang Shen ◽  
Daobin Mu ◽  
Shi Chen ◽  
Bin Xu ◽  
Borong Wu ◽  
...  

2015 ◽  
Vol 173 ◽  
pp. 172-177 ◽  
Author(s):  
Mohammad Ihsan ◽  
Qing Meng ◽  
Li Li ◽  
Dan Li ◽  
Hongqiang Wang ◽  
...  

2018 ◽  
Vol 706 ◽  
pp. 133-139 ◽  
Author(s):  
Haijuan Pei ◽  
Rui Guo ◽  
Wentao Guo ◽  
Wen Liu ◽  
Yong Li ◽  
...  

2020 ◽  
Vol 5 (23) ◽  
pp. 7060-7068 ◽  
Author(s):  
Nghia V. Nguyen ◽  
Thu V. Tran ◽  
Son T. Luong ◽  
Thao M. Pham ◽  
Ky V. Nguyen ◽  
...  

2020 ◽  
Vol 154 ◽  
pp. 104681 ◽  
Author(s):  
Nadia Sahebjamee ◽  
Mohammad Soltanieh ◽  
Seyed Mahmoud Mousavi ◽  
Amir Heydarinasab

2015 ◽  
Vol 1131 ◽  
pp. 210-214
Author(s):  
Radchada Buntem ◽  
Thitiwat Tanyalax

The pectin/functionalized silica coated filter paper (FILPSL2) was used for copper ion adsorption. Silica sol (1), prepared by mixing ethanol, water, TEOS and hydrochloric acid, was slowly added into pectin solution. A piece of filter paper (2 cm x 2 cm) was immersed in the silica-pectin solution for 1 hr. The coated filter paper was dried at room temperature and then oven-dried at 50 °C for 6 hrs to obtain FILPS. The silica sol (2) was subsequently prepared by mixing ethanol, water, N-[3-(Trimethoxysilyl) propyl] ethylenediamine (L2) and hydrochloric acid. The FILPS was immersed in silica sol (2) and the coated paper was oven-dried at 50 °C for 6 hrs to obtain FILPSL2. The SEM micrograph of uncoated Filter paper (FIL) and FILPSL2 showsa characteristic woven pattern. For copper ion adsorption, FILPSL2 was put into 0.1 M of CuCl2solution (pH 2, 25 °C). The color of the paper changes from off-white to intense blue within 5 min due to the complex between amino group of functionalized silica and Cu2+ as evidenced from IR spectroscopy.The equilibrium adsorption percentage and adsorption capacity were 27.10 and 5.5 x 10-3 respectively. The concentrations of copper ion solutions were varied to 10-2and 10-3M at this pH. The lower concentration of copper ion results in the higher adsorption percentage. While the lower concentration of copper ion results in the lower adsorption capacity. The adsorption was also experimented at pH 3.The similar trend was obtained. The optimum pH for adsorption for all concentrations was 2. The effect of interferences on the copper ion adsorption depends on the pH. At pH 2, Ni2+ has a stronger effect. While Cd2+ has a stronger effect at pH 3. The desorption was performed using 0.2 M CH3COOH solution. The complete desorption occurred within 30 min.


Sign in / Sign up

Export Citation Format

Share Document