Generalization of effect of oxygen exposure on formation and performance of carbon molecular sieve membranes

Carbon ◽  
2010 ◽  
Vol 48 (15) ◽  
pp. 4442-4449 ◽  
Author(s):  
Mayumi Kiyono ◽  
Paul J. Williams ◽  
William J. Koros
2020 ◽  
Vol 4 (1) ◽  
pp. 23-35
Author(s):  
Fatin Nurwahdah Ahmad ◽  
Norazlianie Sazali ◽  
Mohd Hafiz Dzafran Othman

Membrane-based technology has proved its practicality in gas separation through its performance. Various type of membranes has been explored, showing that each type of them have their own advantages and disadvantages. Polymeric membranes have been widely used to separate O2/N2, however, its drawbacks lead to the development of carbon molecular sieve membrane. Carbon molecular sieve membranes have demonstrated excellent separation performance for almost similar kinetic diameter molecules such as O2/N2. Many polymer precursors can be used to produce carbon molecular sieve membrane through carbonization process or also known as heat treatment. This paper discusses the variety of precursors and carbonization parameters to produce high quality and performance of carbon molecular sieve membranes.  This paper covers the evaluation in advancement and status of high-performance carbon membrane implemented for separating gas, comprising the variety of precursor materials and the fabrication process that involve many different parameters, also analysis of carbon membranes properties in separating various type of gas having high demand in the industries. The issues regarding the current challenges in developing carbon membrane and approaches with the purpose of solving and improving the performance and applications of carbon membrane are included in this paper. Also, the advantages of the carbon membrane compared to other types of membranes are highlighted. Observation and understanding the variables affecting the quality of membrane encourage the optimization of conditions and techniques in producing high-performance membrane.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 482
Author(s):  
Seong-Joong Kim ◽  
YongSung Kwon ◽  
DaeHun Kim ◽  
Hosik Park ◽  
Young Hoon Cho ◽  
...  

Carbon molecular sieve (CMS) membranes have been developed to replace or support energy-intensive cryogenic distillation for olefin/paraffin separation. Olefin and paraffin have similar molecular properties, but can be separated effectively by a CMS membrane with a rigid, slit-like pore structure. A variety of polymer precursors can give rise to different outcomes in terms of the structure and performance of CMS membranes. Herein, for olefin/paraffin separation, the CMS membranes derived from a number of polymer precursors (such as polyimides, phenolic resin, and polymers of intrinsic microporosity, PIM) are introduced, and olefin/paraffin separation properties of those membranes are summarized. The effects from incorporation of inorganic materials into polymer precursors and from a pyrolysis process on the properties of CMS membranes are also reviewed. Finally, the prospects and future directions of CMS membranes for olefin/paraffin separation and aging issues are discussed.


Carbon ◽  
2010 ◽  
Vol 48 (13) ◽  
pp. 3737-3749 ◽  
Author(s):  
Mita Das ◽  
John D. Perry ◽  
William J. Koros

Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 104
Author(s):  
Hung-Yang Kuo ◽  
Wei-Riu Cheng ◽  
Tzu-Heng Wu ◽  
Horn-Jiunn Sheen ◽  
Chih-Chia Wang ◽  
...  

This paper presents the synthesis and evaluation of a carbon molecular sieve membrane (CMSM) grown inside a MEMS-fabricated μ-preconcentrator for sampling highly volatile organic compounds. An array of µ-pillars measuring 100 µm in diameter and 250 µm in height were fabricated inside a microfluidic channel to increase the attaching surface for the CMSM. The surface area of the CMSM was measured as high as 899 m2/g. A GC peak amplification factor >2 × 104 was demonstrated with gaseous ethyl acetate. Up to 1.4 L of gaseous ethanol at the 100 ppb level could be concentrated without exceeding the capacity of this microchip device. Sharp desorption chromatographic peaks (<3.5 s) were obtained while using this device directly as a GC injector. Less volatile compounds such as gaseous toluene, m-xylene, and mesitylene appeared to be adsorbed strongly on CMSM, showing a memory effect. Sampling parameters such as sample volatilities, sampling capacities, and compound residual issues were empirically determined and discussed.


2018 ◽  
Vol 39 (17) ◽  
pp. 2218-2227 ◽  
Author(s):  
Li-Jing Du ◽  
Jian-Ping Huang ◽  
Bin Wang ◽  
Chen-Hui Wang ◽  
Qiu-Yan Wang ◽  
...  

2020 ◽  
Vol 132 (46) ◽  
pp. 20523-20527
Author(s):  
Oishi Sanyal ◽  
Samuel S. Hays ◽  
Nicholas E. León ◽  
Yoseph A. Guta ◽  
Arun K. Itta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document