Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers

Carbon ◽  
2012 ◽  
Vol 50 (13) ◽  
pp. 4830-4838 ◽  
Author(s):  
Seong Yeol Pak ◽  
Hyung Min Kim ◽  
Seong Yun Kim ◽  
Jae Ryoun Youn
Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7782-7791 ◽  
Author(s):  
Yanhu Zhan ◽  
Emanuele Lago ◽  
Chiara Santillo ◽  
Antonio Esaú Del Río Castillo ◽  
Shuai Hao ◽  
...  

A carbon nanotube/boron nitride/rubber composite with anisotropic electrical conductivity exhibits an EMI shielding effectiveness of 22.41 dB mm−1 and a thermal conductivity equal to 0.25 W m−1 K−1.


RSC Advances ◽  
2018 ◽  
Vol 8 (58) ◽  
pp. 33506-33515 ◽  
Author(s):  
Kiho Kim ◽  
Hyunwoo Oh ◽  
Jooheon Kim

Boron nitride nanosheet (BNNS)/multi-walled carbon nanotube (MWCNT) hybrid particles were synthesized for use as a conductive filler for epoxy and polyphenylene sulfide (PPS).


2007 ◽  
Vol 124-126 ◽  
pp. 1117-1120 ◽  
Author(s):  
Dong Wook Chae ◽  
Young Wan Nam ◽  
Seung Sangh Wang ◽  
S.M. Hong

Poly(vinylidene fluoride) (PVDF) / multi-walled carbon nanotube (MWNT) thermoplastic composites was melt compounded in an internal mixer. The percolation level for this system in electrical conductivity clearly occured between 2 and 2.5 wt%. PVDF/MWNT thermoplastic composites exhibited an increased crystallization temperature with the loading level, at 10 wt% loading by ca. 6. In addition, they presented a shoulder posterior to the main melting peak and an increased endpoint of the peak. In the Wide Angle X-ray Diffraction (WAXD) patterns, the incorporation of MWNT produced a larger shoulder at 2θ =20.7° with increasing the loading level, corresponding to the β-form crystal of PVDF.


MRS Advances ◽  
2019 ◽  
Vol 4 (08) ◽  
pp. 507-513 ◽  
Author(s):  
Dinesh Bommidi ◽  
Ravindra Sunil Dhumal ◽  
Iman Salehinia

ABSTRACTThermal conductivity of a nickel-coated tri-wall carbon nanotube was studied using molecular dynamics where both the phonon and electron contributions were considered. Simulations predicted a significant effect of the metal coating on the thermal conductivity, i.e. 50% decrease for 1.2 nm of Ni coating. However, the decreasing rate of the thermal conductivity is minuscule for the metal thicker than 1.6 nm. The smaller thermal conductivity of the metal coating, phonon scattering at the interface, and less impacted heat transfer on the inner tubes of the carbon nanotube rationalized the observed trends.


2007 ◽  
Vol 46 (5A) ◽  
pp. 3139-3143 ◽  
Author(s):  
Hiroki Shioya ◽  
Taisuke Iwai ◽  
Daiyu Kondo ◽  
Mizuhisa Nihei ◽  
Yuji Awano

Sign in / Sign up

Export Citation Format

Share Document