Adsorption of cationized eucalyptus heteropolysaccharides onto chemical and mechanical pulp fibers

2015 ◽  
Vol 123 ◽  
pp. 324-330 ◽  
Author(s):  
Guichun Hu ◽  
Shiyu Fu ◽  
Hao Liu ◽  
Lucian A. Lucia
Keyword(s):  
BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6561-6575
Author(s):  
Kirsi Immonen ◽  
Erkki Saharinen ◽  
Ilkka Nurminen ◽  
Jari Sirviö ◽  
David Sandquist

Recent studies have suggested that blocky mechanical pulp fines (CTMP fines) and fibrillar fines (SMC fines) have a negative impact on biocomposite modulus of rupture (MoR) in compression molded biocomposites. In addition, it was suggested that CTMP fines also have a negative impact on biocomposite modulus of elasticity (MoE). This study investigated whether these findings transfer to other types of cellulose fines material and injection molding. The effect of ‘V-fines’ addition to sawdust- and TMP-based biocomposites was analyzed, with respect to fines concentration, dispersing agent, and compatibilizers. The results indicated that the addition of ‘V-fines’ increased the stiffness (MoE) of all the analyzed compositions, while reducing the elongation at break. The addition of ‘V-fines’ reduced the tensile and flexural strength of TMP biocomposites, while it was largely unaffected for sawdust biocomposites. Flexural strength for neat ‘V-fines’ composites showed an increase that was proportional to the remaining pulp fibers composition. The addition of a dispersant agent to the ‘V-fines’ increased tensile strength, suggesting that an increased dispersion of the ‘V-fines’ can be achieved and is beneficial to the composite. The effects of the analyzed compatibilizer (polyethyleneoxide) was negligible, except for a small indication of increased MoE for fines / sawdust biocomposites.


2013 ◽  
Vol 807-809 ◽  
pp. 496-499
Author(s):  
Lu Peng Shao ◽  
Yu Liu ◽  
Zhen Wang ◽  
Jia Chuan Chen

This paper compared the differences of laccase modified APMP and unmodified controlled trails to characterize laccase’s impacts on the whiteness, physical properties and fiber morphology of APMP. From this paper, we can see that after laccase modified, the whiteness of the APMP significantly reduced; physical properties of the APMP were reduced after the first enhanced with increasing the amount of laccase. when the amount of laccase was 2u/g, the physical properties of the APMP were best, the same time after 2u/g laccase treatment ,the surfaces of the pulp fibers engendered the devillicate and peeling.


2003 ◽  
Vol 49 (4) ◽  
pp. 361-365 ◽  
Author(s):  
Jonas HafrÉn ◽  
Geoffrey Daniel
Keyword(s):  

2020 ◽  
Vol 150 ◽  
pp. 112410
Author(s):  
Xingye An ◽  
Jing Liu ◽  
Liqin Liu ◽  
Hao Zhang ◽  
Shuangxi Nie ◽  
...  

2000 ◽  
Vol 16 (6) ◽  
pp. 1025-1029 ◽  
Author(s):  
K.K.Y. Wong ◽  
J.D. Richardson ◽  
S.D. Mansfield

TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 9-19 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART

Brownstock washing is a complex, dynamic process in which dirty wash water or weak black liquor (dissolved organic and inorganic material obtained from the pulp cooking process) is separated from pulp fibers. The use of material balance techniques is of great importance to identify potential problems and determine how well the system is operating. The kraft pulping industry was the first known to combine pulp washing with the recovery of materials used and produced in the wood cooking process. The motivation behind materials recovery is economic, and more recently, environmentally driven. The chemicals used in the kraft process are expensive as compared to those used in the sulfite process. For the kraft process to be economically viable, it is imperative that a very high percentage of the cooking chemicals be recovered. To reach such high efficiency, a variety of washing systems and monitoring parameters have been developed. Antifoam additives and processing aids have also played an important role in increasing washing effectiveness. Antifoam materials help attain washing effectiveness by preventing entrapped air from forming in the system, which allows for an easier, unimpeded flow of filtrate through the screens and washers.


Sign in / Sign up

Export Citation Format

Share Document