Effect of hydrogen peroxide bleaching on anionic groups and structures of sulfonated chemo-mechanical pulp fibers

Author(s):  
Mingfu Li ◽  
Juan Yin ◽  
Lingyu Hu ◽  
Siyuan Chen ◽  
Douyong Min ◽  
...  
2011 ◽  
Vol 291-294 ◽  
pp. 1887-1891
Author(s):  
Shan Shan Liu ◽  
Gui Gan Fang ◽  
Yong Jun Deng ◽  
Qiang Wang

The influence of operational variables in the Sulfonated Chemi-mechanical pulp (SCMP) of cotton stalk was studied, and the hydrogen peroxide bleaching sequence was carried out. The major factors, such as sulfite sodium charge (calculated as Na2SO33%, 6%, 9%or 12%on oven-dry cotton stalk), active alkali charge (calculated as NaOH 2%, 4%, 6%or 8%on oven-dry cotton stalk) and the maximum temperature (110°C, 130°C or 150°C) was investigated. The result shows that: the pulp physical property was influenced significantly by sulfite sodium and active alkali charge, at an increasing tendency with above factors. The optimal chemical treatment cooking conditions could be proposed as follows: sulfite sodium charge 9%, active alkali charge 2%, maximum temperature 130°C and liquor ratio 4:1. What’s more, the single H2O2bleaching sequence was employed, which can provide pulps with brightness 58.0%ISO.


BioResources ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 870-881
Author(s):  
Fangmin Liang ◽  
Guigan Fang ◽  
Jian Jiao ◽  
Yongjun Deng ◽  
Shanming Han ◽  
...  

The brightness of bleached bamboo chemo-mechanical pulp (CMP) is often too low to be used as a furnish in value-added paper products. In this study, preliminary optimization of various parameters of a modified hydrogen peroxide (H2O2) bleaching procedure for bamboo CMP pulps was performed using the inclusion of ethanol in the bleaching medium (IEBM). Compared with a conventional bleaching method, this modified process is aimed at improving bleaching efficiency and brightness ceiling of bamboo CMP with the proper usage of chemicals. The CMP was bleached to a brightness of 74.2% ISO at the usage level of 12% H2O2, which shows it increased by 7.4% ISO compared with the conventional method. For a brightness target of 72.0% ISO, bleaching with the IEBM method reduced the H2O2 consumption by approximately 60%. In addition, a higher activation energy of H2O2 for the IEBM method was calculated to be 23.3 kJ/mol, which was increased by 3.3 kJ/mol compared with the conventional method.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 721-736
Author(s):  
Lizi Li ◽  
Sanghoon Lee ◽  
Hak Lae Lee ◽  
Hye Jung Youn

The adsorption of xylan on pulp fibers improves the strength properties of paper. However, the optical properties are decreased significantly. The objective of our research was to bleach hardwood kraft pulp with adsorbed birch xylan by hydrogen peroxide and study the effect of bleaching parameters on paper properties. The bleaching parameters studied included bleaching temperature, time, initial pH as well as MgSO4 dosage. The optical properties (whiteness, brightness, opacity) and physical properties (tensile index, tearing index, bulk) of handsheets made from the pulp bleached with different process variables were measured. The results showed that better optical properties were obtained with higher bleaching temperature, longer bleaching time, and more MgSO4 dosage. Bleaching from an initial pH of 11 provided the highest brightness value. On the other hand, strength properties were improved with decreasing of the bleaching temperature, and increasing the initial pH and MgSO4 dosage. The relationship between strength properties and bleaching time varied depending on bleaching temperature. According to the results, both good mechanical properties and optical properties could be achieved when the operating parameters were controlled properly. Therefore hydrogen peroxide bleaching was proved to be a suitable method for bleaching hardwood kraft pulp with adsorption of birch xylan.


2013 ◽  
Vol 295-298 ◽  
pp. 335-338
Author(s):  
Zong Quan Li ◽  
Hong Yan Dou ◽  
Xiao Qian Chen ◽  
Chao Wang

Preconditioning Refiner Chemic Alkaline Peroxide Mechanical Pulp (PRC-APMP) is one of the most currently used high yield pulps in China. During the bleaching of PRC-APMP, hydrogen peroxide is a commonly used bleaching agent. In order to improve the bleaching efficiency of PRC-APMP, urea was used as an activator in peroxide bleaching of aspen PRC-APMP. The results showed that the brightness of the urea-based bleached pulp higher than that without urea addition at the same hydrogen peroxide dosage. The physical properties such as the breaking length, tear index and fiber length of the bleached pulp were comparable to those without urea addition in peroxide bleaching.


BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 1062-1073
Author(s):  
Yuqian Guo ◽  
Zhongjian Tian ◽  
Xingxiang Ji ◽  
Gaojin Lyu ◽  
Jiachuan Chen ◽  
...  

In order to improve the physical properties and brightness of poplar chemi-mechanical pulp, a new staged alkali and hydrogen peroxide treatment method was proposed and applied. Wood chips were impregnated and swelled with an alkali solution and then treated with a hydrogen peroxide bleaching liquor. A thorough evaluation and comparison of the physical properties and brightness of the pulps that underwent different treatment methods was conducted. The results showed that when the pulp was treated with an alkali and hydrogen peroxide treatment method with an alkali dosage of 6% and a hydrogen peroxide dosage of 6%, the tear index was 3.64 mN‧m2/g, the tensile strength was 3.61 kN/m, and the pulp brightness was 67.1% (ISO). The obtained physical properties and brightness of the alkali and hydrogen peroxide method treated pulp were greater than the traditional alkaline hydrogen peroxide method values, as well as the values of any other single treatment methods.


2006 ◽  
Vol 21 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Marianne Haugan ◽  
Øyvind Gregersen

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (11) ◽  
pp. 601-607
Author(s):  
Alan Rudie ◽  
Peter Hart

The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.


2006 ◽  
Vol 21 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Eva Svensson Rundlöf ◽  
Eric Zhang ◽  
Liming Zhang ◽  
Göran Gellerstedt

2011 ◽  
Vol 236-238 ◽  
pp. 1307-1312
Author(s):  
Chao Jun Wu ◽  
Chuan Shan Zhao ◽  
Jun Li ◽  
Ke FU Chen

In this paper, the effect of microwave treatment on the hydrogen peroxide bleaching of Soda-AQ wheat-straw pulp was investigated. The results showed that microwave treatment could increase the brightness of the hydrogen peroxide bleached pulp. The fiber coarseness of microwave enhancing peroxide bleached pulp was higher than that of the peroxide bleached pulp. However, the arithmetic average fiber length, the length weighted average fiber length and weight weighted average fiber length of the former was lower than that of the latter. Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD) spectra showed that CrI(%) crystallinity of microwave enhancing peroxide bleached pulp was similar as that of the peroxide bleached pulp but all higher than that of the Soda-AQ wheat-straw pulp. N·O′KI infra-red crystalline index of microwave enhancing peroxide bleached pulp were lower than that of the peroxide bleached pulp. The FTIR spectra of lignin showed that the microwave treatment had some influences on the methoxyl and phenolic group in lignin.


Sign in / Sign up

Export Citation Format

Share Document