Brownstock washing: A review of the literature

TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 9-19 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART

Brownstock washing is a complex, dynamic process in which dirty wash water or weak black liquor (dissolved organic and inorganic material obtained from the pulp cooking process) is separated from pulp fibers. The use of material balance techniques is of great importance to identify potential problems and determine how well the system is operating. The kraft pulping industry was the first known to combine pulp washing with the recovery of materials used and produced in the wood cooking process. The motivation behind materials recovery is economic, and more recently, environmentally driven. The chemicals used in the kraft process are expensive as compared to those used in the sulfite process. For the kraft process to be economically viable, it is imperative that a very high percentage of the cooking chemicals be recovered. To reach such high efficiency, a variety of washing systems and monitoring parameters have been developed. Antifoam additives and processing aids have also played an important role in increasing washing effectiveness. Antifoam materials help attain washing effectiveness by preventing entrapped air from forming in the system, which allows for an easier, unimpeded flow of filtrate through the screens and washers.

Holzforschung ◽  
2015 ◽  
Vol 69 (9) ◽  
pp. 1049-1058 ◽  
Author(s):  
Markus Paananen ◽  
Stella Rovio ◽  
Tiina Liitiä ◽  
Herbert Sixta

Abstract The behavior of Scots pine (Pinus sylvestris L.) polysaccharides was studied during modified kraft pulping processes of wood meal by polysulfide (K-PS) and polysulfide anthraquinone (K-PSAQ) at the hydroxide ion concentrations of 0.50 and 1.55 M [OH-] with a high liquor-to-wood (L/W) ratio of 200. The high L/W ratio was selected for avoiding diffusion phenomena and to be able to focus on the chemistry of polysaccharides. A comparison with the kraft process reference at 160°C revealed a substantial increase in pulp yield (6–7% in K-PS pulping and 7.5–10.5% in K-PSAQ pulping) mainly attributed to galactoglucomannan (GGM) stabilization. Due to the rapid delignification rate at 1.55 M [OH-] concentration, the temperature could be lowered from 160°C to 130°C without a notable prolongation of cooking time. In K-PS pulping at 130°C, no additional GGM stability was observed compared to 160°C, whereas cellulose and arabinoxylan preservation was improved. In K-PSAQ pulping, GGM preservation was also significantly improved. At 130°C, pulp yield increase of approximately 8% in PS pulping and more than 11% in PSAQ pulping was observed. The amount of dissolved softwood hemicelluloses in black liquor was significantly increased at the higher [OH-] level and even further in the presence of PS and AQ. Simultaneously, the formation of hydroxy acids was decreased, indicating a significant stabilization of the dissolved polysaccharide fraction parallel to the pulp polysaccharides.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2887
Author(s):  
Kena Li ◽  
Jens Prothmann ◽  
Margareta Sandahl ◽  
Sara Blomberg ◽  
Charlotta Turner ◽  
...  

Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170–210 °C. The most common phenolic compound types were dimers, followed by monomers. A second round of depolymerization yielded low amounts of monomers and dimers, while a high number of trimers were formed, thought to be the result of repolymerization.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Silvia Maitz ◽  
Marlene Kienberger

Abstract Black liquor (BL) from the kraft process is considered a promising feedstock for several biorefinery scenarios. Besides lignin and carboxylic acids, this liquor also contains hemicelluloses and their degradation products. A simple and reliable detection of those is of importance for further processing of the liquor. The present paper presents a thorough investigation of quantitative analysis of carbohydrates, by performing acid hydrolysis experiments with a concentrated BL sample of 44% total dry solids. The hydrolysates were then analysed for the four monosaccharides arabinose, xylose, galactose and glucose, by high performance ion chromatography (HPIC) with pulsed amperometric detection. The amount of sulphuric acid needed for complete hydrolysis of the carbohydrates was determined in the range of 3.5–5 mol kg−1 of BL. A lower acid concentration led to insufficient liberation of galactose and glucose, while higher acid concentrations led to degradation of arabinose and xylose. The carbohydrate degradation was also investigated over time for different dilutions and hydrolysis temperatures. These experiments confirmed that the hexoses require considerably harsher conditions for complete liberation compared to xylose and arabinose. The use of internal recovery standards (RSs) was tested; the highest recoveries were obtained by direct spiking of the samples with the RS prior to hydrolysis.


Author(s):  
Р. V. Lukanin

This article contains results of exergic analysis of kraft pulping flow chart. The results of exergic balances of main kraft pulping processes such as alkali recovery at recovery boilers, black liquor evaporation, chips cooking, lime decarbonation are considered in details in the article. The analysis of the process flow chart makes it possible to determine the bottlenecks in the use of heat energy and to substantiate principal lines for increasing energy efficiency of the processes under study. A main share of the exergy expended in the existing pulping process is due to alkali recovery in the recovery boiler and comprises 70% of the total exergy available in the system. A procedure of hydrothermal production of chemicals in the process of kraft pulping is studied. A schematic diagram and analysis of heat technique of the kraft pulping process which in fact consists of organic component removal from black liquor through its autoclave carbonation with flue gases releasing from lime kiln at the temperature 80-90 oC are given in the article. The removal of organic components under these conditions can reach 70 %. In the studied version the exergic efficiency ηe = 80 % is considerably higher than that of the flow chart existing for chemicals recovery which is equal to ηe = 48 %. This is the evidence of high energy efficiency of the method developed.


2020 ◽  
Vol 02 (04) ◽  
pp. 253-281
Author(s):  
Yingqi Zheng ◽  
Xiaozhang Zhu

In view of the wide applications of near-infrared (NIR) light in night vision, security, medicine, sensors, telecommunications, and military applications, and the scarcity of high-efficiency NIR-emitting materials, development of alternative NIR-emitting materials is urgently required. In this review, we focus on three kinds of emerging NIR-emitting materials used in light-emitting diodes (LEDs), namely organic materials, inorganic quantum dot (QD) materials, and organic–inorganic hybrid perovskite materials; the corresponding devices are organic LEDs, QD LEDs, and perovskite LEDs. The advantages and disadvantages of the three kinds of materials are discussed, some representative works are reviewed, and a brief outlook for these materials is provided.


1975 ◽  
Vol 5 (3) ◽  
pp. 399-402 ◽  
Author(s):  
J. D. Gagnon ◽  
K. Hunt

Samples of five pairs of fertilized and non-fertilized 60-year-old natural balsam fir (Abiesbalsamea (L.) Mill.) growing in the Quebec boreal forest region were pulped by the kraft process and the specific gravity was measured. Analyses carried out 7 years after treatment on the last seven terminal internodes revealed the mean pulp yield of trees fertilized exceeded that of non-fertilized by 7%, while the mean specific gravity was about 6% lower.


Sign in / Sign up

Export Citation Format

Share Document