Self-oscillations of methane oxidation rate over Pd/Al2O3 catalysts: Role of Pd particle size

2016 ◽  
Vol 77 ◽  
pp. 103-107 ◽  
Author(s):  
V.Yu. Bychkov ◽  
Yu.P. Tulenin ◽  
M.M. Slinko ◽  
A.K. Khudorozhkov ◽  
V.I. Bukhtiyarov ◽  
...  
Microbiology ◽  
2020 ◽  
Vol 89 (2) ◽  
pp. 182-191
Author(s):  
A. F. Sabrekov ◽  
M. V. Semenov ◽  
I. E. Terent’eva ◽  
Yu. V. Litti ◽  
D. V. Il’yasov ◽  
...  

2019 ◽  
Author(s):  
Jun Murase ◽  
Atsuko Sugimoto ◽  
Ryo Shingubara ◽  
Tomoki Morozumi ◽  
Shinya Takano ◽  
...  

Abstract. Arctic wetlands are significant sources of atmospheric methane and the observed accelerated climate changes in the arctic could cause the change in methane dynamics, where methane oxidation would be the key process to control methane emission from wetlands. In this study we determined the potential methane oxidation rate of the wetland soils of a taiga-tundra transition zone in northeastern Siberia. Peat soil samples were collected in summer from depressions covered with tussocks of sedges and Sphagnum spp. and from mounds vegetated with moss and larch trees. A bottle incubation experiment demonstrated that the soil samples collected from depressions in the moss- and sedge-dominated zones exhibited active methane oxidation with no time lag. The potential methane oxidation rates at 15 °C ranged from 94 to 496 nmol h−1 g−1 dw. Methane oxidation was observed over the depths studied (0–40 cm) including the water-saturated anoxic layers. The maximum methane oxidation rate was recorded in the layer above the water-saturated layer: the surface (0–2 cm) layer in the sedge-dominated zone and in the middle (4–6 cm) layer in the moss-dominated zone. The methane oxidation rate was temperature-dependent, and the threshold temperature of methane oxidation was estimated to be −4 to −11 °C, which suggested methane oxidation at subzero temperatures. Soil samples collected from the frozen layer of Sphagnum peat also showed immediate methane consumption when incubated at 15 °C. The present results suggest that the methane oxidizing bacteria in the wetland soils keep their potential activities even under anoxic and frozen conditions and immediately utilize methane when the conditions become favorable. On the other hand, the inhibitor of methane oxidation did not affect the methane flux from the sedge and moss zones in situ, which indicated the minor role of plant-associated methane oxidation.


1976 ◽  
Vol 36 (01) ◽  
pp. 037-048 ◽  
Author(s):  
Eric P. Brass ◽  
Walter B. Forman ◽  
Robert V. Edwards ◽  
Olgierd Lindan

SummaryThe process of fibrin formation using highly purified fibrinogen and thrombin was studied using laser fluctuation spectroscopy, a method that rapidly determines particle size in a solution. Two periods in fibrin clot formation were noted: an induction period during which no fibrin polymerization occurred and a period of rapid increase in particle size. Direct measurement of fibrin monomer polymerization and fibrinopeptide release showed no evidence of an induction period. These observations were best explained by a kinetic model for fibrin clot formation incorporating a reversible fibrinogen-fibrin monomer complex. In this model, the complex serves as a buffer system during the earliest phase of fibrin formation. This prevents the accumulation of free polymerizable fibrin monomer until an appreciable amount of fibrinogen has reacted with thrombin, at which point the fibrin monomer level rises rapidly and polymerization proceeds. Clinically, the complex may be a homeostatic mechanism preventing pathological clotting during periods of elevated fibrinogen.


Author(s):  
Sajjad Rimaz ◽  
Reza Katal

: In the present study, SAPO-34 particles were synthesized using hydrothermal (HT) and dry gel (DG) conversion methods in the presence of diethyl amine (DEA) as an organic structure directing agent (SDA). Carbon nanotubes (CNT) were used as hard template in the synthesis procedure to introduce transport pores into the structures of the synthesized samples. The synthesized samples were characterized with different methods to reveal effects of synthesis method and using hard template on their structure and catalytic performance in methanol to olefin reaction (MTO). DG conversion method results in smaller particle size in comparison with hydrothermal method, resulting in enhancing catalytic performance. On the other side, using CNT in the synthesis procedure with DG method results in more reduction in particle size and formation of hierarchical structure which drastically improves catalytic performance.


1991 ◽  
Vol 56 (10) ◽  
pp. 1993-2008
Author(s):  
S. Hanafi ◽  
G. M. S. El-Shafei ◽  
B. Abd El-Hamid

The hydration of tricalcium silicate (C3S) with three grain sizes of monoclinic (M) and triclinic (T) modifications and on their thermally activated samples were investigated by exposure to water vapour at 80°C for 60 days. The products were investigated by XRD, TG and N2 adsorption. The smaller the particle size the greater was the hydration for both dried and activated samples from (M). In the activated samples a hydrate with 2θ values of 38.4°, 44.6° and 48.6° could be identified. Hydration increased with particle size for the unactivated (T) samples but after activation the intermediate size exhibited enhanced hydration. Thermal treatment at 950°C of (T) samples increased the surface active centers on the expense of those in the bulk. Changes produced in surface texture upon activation and/or hydration are discussed.


Sign in / Sign up

Export Citation Format

Share Document