Interrelations of the Bryansk paleosol (end of MIS 3) with the Holocene surface soils in micro-depressions of the central forest-steppe within the Russian Upland

CATENA ◽  
2019 ◽  
Vol 172 ◽  
pp. 619-633 ◽  
Author(s):  
Svetlana Sycheva ◽  
Olga Khokhlova ◽  
Polina Pushkina ◽  
Pavel Ukrainsky
2021 ◽  
Vol 9 ◽  
Author(s):  
I. D. Streletskaya ◽  
A. A. Pismeniuk ◽  
A. A. Vasiliev ◽  
E. A. Gusev ◽  
G. E. Oblogov ◽  
...  

The Kara Sea coast and part of the shelf are characterized by wide presence of the ice-rich permafrost sequences containing massive tabular ground ice (MTGI) and ice wedges (IW). The investigations of distribution, morphology and isotopic composition of MTGI and IW allows paleoenvironmental reconstructions for Late Pleistocene and Holocene period in the Kara Sea Region. This work summarizes result of long-term research of ice-rich permafrost at eight key sites located in the Yamal, Gydan, Taimyr Peninsulas, and Sibiryakov Island. We identified several types of ground ice in the coastal sediments and summarized data on their isotopic and geochemical composition, and methane content. We summarized the available data on particle size distribution, ice chemical composition, including organic carbon content, and age of the enclosing ice sediments. The results show that Quaternary sediments of the region accumulated during MIS 5 – MIS 1 and generally consisted of two main stratigraphic parts. Ice-rich polygenetic continental sediments with syngenetic and epigenetic IW represent the upper part of geological sections (10–15 m). The IW formed in two stages: in the Late Pleistocene (MIS 3 – MIS 2) and in the Holocene cold periods. Oxygen isotope composition of IW formed during MIS 3 – MIS 2 is on average 6‰ lower than that of the Holocene IW. The saline clay with rare sand layers of the lower part of geological sections, formed in marine and shallow shelf anaerobic conditions. MTGI present in the lower part of the sections. The MTGI formed under epigenetic freezing of marine sediments immediately after sea regression and syngenetic freezing of marine sediments in the tidal zone and in the conditions of shallow sea.


Radiocarbon ◽  
2002 ◽  
Vol 44 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Lyubov A Orlova ◽  
Valentina S Zykina

We have constructed a detailed chronological description of soil formation and its environments with data obtained on radiocarbon ages, palynology, and pedology of the Holocene buried soils in the forest steppe of western and central Siberia. We studied a number of Holocene sections, which were located in different geomorphic situations. Radiocarbon dating of materials from several soil horizons, including soil organic matter (SOM), wood, peat, charcoal, and carbonates, revealed three climatic periods and five stages of soil formation in the second part of the Holocene. 14C ages of approximately 6355 BP, 6020 BP, and 5930 BP showed that the longest and most active stage is associated with the Holocene Climatic Optimum, when dark-grey soils were formed in the forest environment. The conditions of birch forest steppe favored formation of chernozem and associated meadow-chernozem and meadow soils. Subboreal time includes two stages of soil formation corresponding to lake regressions, which were less intense than those of the Holocene Optimum. The soils of that time are chernozem, grassland-chernozem, and saline types, interbedded with thin peat layers 14C dated to around 4555 B P, 4240 BP and 3480 BP, and 3170 B P. Subatlantic time includes two poorly developed hydromorphic paleosols formed within inshore parts of lakes and chernozem-type automorphic paleosol. The older horizon was formed during approximately 2500–1770 BP, and the younger one during approximately 1640–400 B P. The buried soils of the Subatlantic time period also attest to short episodes of lake regression. The climate changes show an evident trend: in the second part of the Atlantic time period it was warmer and drier than at present, and in the Subboreal and Subatlantic time periods the climate was cool and humid.


2020 ◽  
Author(s):  
Svetlana Sycheva ◽  
Olga Khokhlova

<p>A catena of the Holocene soils and interstadial Bryansk paleosol has been studied within a small closed depression in the Kazatskaya Steppe on the Central Russian Upland. This depression is located on the territory of the Central Chernozem Biospheric Reserve named after V.V. Alekhin, Kursk oblast, Russia and presumably originated from suffosion processes. The main objective of the work is to find out how the Bryansk paleosol (final phase of MIS 3) changes under the influence of not only the cryogenesis of the Valdai glaciation maximum (MIS 2), but also Holocene soil formation (MIS 1) under different conditions of the modern microrelief within the studied catena. We studied the macro- and micromorphological characteristics, certain physical and chemical properties of the Bryansk paleosol on one hand and those of the superimposed Holocene soil on another, taking into consideration various conditions of the present-day microrelief. The studied catena is a typical component of the landscape and soil cover structure for watersheds of the Central Russian Upland. On the micro-elevation rising 80 cm above the micro-depression bottom, theHaplic Chernozems are developed, on the slope – the Luvic Chernozems, and at the bottom – theStagnic Chernozems. The change of the "normal" profile of paleosol of warm interstadial in final phase of MIS 3 started already in the last stages of its formation. The Bryansk soil is heavily deformed by cryogenic processes during the Valday glaciation maximum (the Vladimir cryogenic horizon, MIS 2). The secondary diagenesis of the Bryansk paleosol is related to the Holocene soil-forming processes. The Holocene soils are superimposed on the Middle Valday Bryansk paleosol, transforming it in different ways in different sectors of catena. On micro-elevation the Holocene diagenesis is minimal and consists in fragmentation by mesofauna, additional penetration of carbonates in the upper horizon of the paleosol. The micromorphological analysis showed that the fragmentation of soil mass by mezofauna is very significant, humus is abundant in the form of brown spots (organo-mineral complexes), and calcite is completely immersed into the clay fine material. The largest in size but rare grains of sparite have an unusual shape and probably biogenic origin. At the bottom of the micro-depression the Bryansk paleosol is the most transformed, and the entire profile of the Bryansk soil turned into illuvial horizon of the Holocene meadow-chernozem soil. At the micro-level of observation the clay fine material of the Bryansk soil is strongly consolidated (close c/f related distribution), has signs of anisotropy: circular, grano- and crosstriated b-fabric, the mineral grains are almost invisible and have the dimension of fine dust, very thin Fe- clay coatings in the pores, Fe spots are scattered over the fine clay material, and very characteristic of the presence of many black and sometimes transparent with a black border cube-shaped minerals (whewellite, weddellite?) which fill plant residues in the pores. This work was supported by the Russian Foundation for Basic Research; project N 19-29-05024 mk.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 376
Author(s):  
Jadranka Barešić ◽  
Sanja Faivre ◽  
Andreja Sironić ◽  
Damir Borković ◽  
Ivanka Lovrenčić Mikelić ◽  
...  

Tufa is a fresh-water surface calcium carbonate deposit precipitated at or near ambient temperature, and commonly contains the remains of macro- and microphytes. Many Holocene tufas are found along the Zrmanja River, Dalmatian karst, Croatia. In this work we present radiocarbon dating results of older tufa that was found for the first time at the Zrmanja River near the Village of Sanaderi. Tufa outcrops were observed at different levels, between the river bed and up to 26 m above its present level. Radiocarbon dating of the carbonate fraction revealed ages from modern, at the river bed, up to 40 kBP ~20 m above its present level. These ages fit well with the hypothesis that the Zrmanja River had a previous surface connection with the Krka River, and changed its flow direction toward the Novigrad Sea approximately 40 kBP (Marine Isotope Stage 3). Radiocarbon AMS dating of tufa organic residue yielded a maximum conventional age of 17 kBP for the highest outcrop position indicating probable penetration of younger organic material to hollow tufa structures, as confirmed by radiocarbon analyses of humin extracted from the samples. Stable carbon isotope composition (δ13C) of the carbonate fraction of (−10.4 ± 0.6)‰ and (−9.7 ± 0.8)‰ for the Holocene and the older samples, respectively, indicate the autochthonous origin of the carbonate. The δ13C values of (−30.5 ± 0.3)‰ and (−29.6 ± 0.6)‰ for organic residue, having ages <500 BP and >5000 BP, respectively, suggest a unique carbon source for photosynthesis, mainly atmospheric CO2, with an indication of the Suess effect in δ13C during last centuries. The oxygen isotopic composition (δ18O) agrees well with deposition of tufa samples in two stages, the Holocene (−8.02 ± 0.72‰) and “old” (mainly MIS 3 and the beginning of MIS 2) (−6.89 ± 0.34‰), suggesting a ~4 °C lower temperature in MIS 3 compared to the current one.


2018 ◽  
Vol 91 (1) ◽  
pp. 289-300
Author(s):  
Wei Peng ◽  
Xiaozhong Huang ◽  
Dongju Zhang ◽  
Michael J. Storozum ◽  
Fahu Chen

AbstractClimatic change that affects biological productivity is often argued to be a primary force influencing human activities during the glacial period. To test this assumption, we combine in-site pollen, paleoclimatic, and archaeological data from the Dadiwan site and nearby areas on the western Loess Plateau (WLP) that date to Marine Oxygen Isotope Stage (MIS) 3. Our comparison of multiple datasets suggests that regional human activities increased when the vegetation around the Dadiwan area shifted from forest steppe in the early MIS 3 (59–46.7 ka) to steppe in the middle to late MIS 3 (46.7–29.5 ka). Our results indicate that regional human activities increased again during the late MIS 3 when the amount of precipitation was higher, as indicated by the lower Artemisia proportion. We suggest that increased precipitation on the WLP enhanced the above-ground biomass production and may be responsible for an increase in human activity and population in this region.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Chao Zhao ◽  
Xiaoqiang Li ◽  
Xinying Zhou ◽  
Keliang Zhao ◽  
Qing Yang

Pollen samples from peat sediments on the south bank of the Heilongjiang River in northern Northeast China (NE China) were analyzed to reconstruct the historical response of vegetation to climate change since 7800 cal yr BP. Vegetation was found to have experienced five successions from cold-temperate mixed coniferous and broadleaved forest to forest-steppe, steppe-woodland, steppe, and finally meadow-woodland. From 7800 to 7300 cal yr BP, the study area was warmer than present, andBetula, Larix, andPicea-dominated mixed coniferous and broadleaved forests thrived. Two cooling events at 7300 cal yr BP and 4500 cal yr BP led to a decrease inBetulaand other broadleaved forests, whereas herbs of Poaceae expanded, leading to forest-steppe and then steppe-woodland environments. After 2500 cal yr BP, reduced temperatures and a decrease in evaporation rates are likely to have resulted in permafrost expansion and surface ponding, with meadow and isolated coniferous forests developing a resistance to the cold-wet environment. The Holocene warm period in NE China (7800–7300 cal yr BP) could have resulted in a strengthening of precipitation in northernmost NE China and encouraged the development of broadleaved forests.


The Holocene ◽  
2016 ◽  
Vol 27 (7) ◽  
pp. 941-950 ◽  
Author(s):  
Robert D McCulloch ◽  
Maria J Figuerero Torres ◽  
Guillermo L Mengoni Goñalons ◽  
Rebecca Barclay ◽  
Claudia Mansilla

There are few continuous palaeoenvironmental records spanning the Holocene in Andean Southern Patagonia near the Northern Patagonian Ice Field (~47°S). Insights into the environmental context for human–landscape interactions have relied mostly on data extrapolated from distant extra-Andean locations that suggest limited environmental change during the Holocene. La Frontera (46°52′S), a high altitude site on the southern beech forest–steppe ecotone boundary in the Río Zeballos valley, provides lithostratigraphical and palaeoecological evidence, constrained by 14C dating and tephrochronology, for dynamic environmental change during the last ~8000 years. An initial amelioration in environmental conditions after c. 8210 cal. BP was followed by a reversal to colder conditions between c. 7420 and 6480 cal. BP, coincident with initial human occupation within the Paso Roballos and Lago Pueyrredón basin. Between c. 6480 and 3700 cal. BP, the woodland/steppe composition continued to fluctuate in response to climatic change. After c. 3700 cal. BP, a gradual shift to more stable and temperate conditions, punctuated by increased fire activity, is contemporary with the later phases of human occupation extending up into the Paso Roballos–Río Zeballos corridor.


Sign in / Sign up

Export Citation Format

Share Document