Sand cover enhances rill formation under laboratory rainfall simulation

CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105472
Author(s):  
Zongping Ren ◽  
Xing Zhang ◽  
Xun-chang (John) Zhang ◽  
Zhanbin Li ◽  
Peng Li ◽  
...  
Keyword(s):  
Author(s):  
Juan An ◽  
Jibiao Geng ◽  
Huiling Yang ◽  
Hongli Song ◽  
Bin Wang

Seepage plays a key role in nutrient loss and easily occurs in widely-used contour ridge systems due to the ponding process. However, the characteristics of nutrient loss and its influential factors under seepage with rainfall condition in contour ridge systems are still unclear. In this study, 23 seepage and rainfall simulation experiments are arranged in an orthogonal rotatable central composite design to investigate the role of ridge height, row grade, and field slope on Nitrate (NO3−–N) and Orthophosphate (PO4+3–P) losses resulting from seepage in contour ridge systems. In total, three types of NO3−–N and PO4+3–P loss were observed according to erosion processes of inter-rill–headward, inter-rill–headward–contour failure, and inter-rill–headward–contour failure–rill. Our results demonstrated that second-order polynomial regression models were obtained to predict NO3−–N and PO4+3–P loss with the independent variables of ridge height, row grade, and field slope. Ridge height was the most important factor for nutrient loss, with a significantly positive effect and the greatest contribution (52.35–53.47%). The secondary factor of row grade exerted a significant and negative effect, and was with a contribution of 19.86–24.11% to nutrient loss. The interaction between ridge height and row grade revealed a significantly negative effect on NO3−–N loss, whereas interactions among the three factors did not significantly affect PO4+3–P loss. Field slope only significantly affected NO3−–N loss. The optimal design of a contour ridge system to control nutrient loss was obtained at ridge height of 8 cm, row grade of 2°, and field slope of 6.5°. This study provides a method to assess and model nutrient loss, and improves guidance to implement contour ridge systems in terms of nutrient loss control.


2021 ◽  
Vol 18 (3) ◽  
pp. 706-715
Author(s):  
Leila Gholami ◽  
Abdulavahed Khaledi Darvishan ◽  
Veliber Spalevic ◽  
Artemi Cerdà ◽  
Ataollah Kavian

1998 ◽  
Vol 78 (4) ◽  
pp. 699-706 ◽  
Author(s):  
S. I. Gill ◽  
M. A. Naeth ◽  
D. S. Chanasyk ◽  
V. S. Baron

Currently, there is interest in Western Canada in extending the grazing season using perennial and annual forages. Of greatest concern is the environmental sustainability of these grazing systems, with emphasis on their ability to withstand erosion. A study to examine the runoff and sediment yields of annual and perennial forages in central Alberta was initiated in 1994. Runoff and sediment yield were quantified under snowmelt and rainfall events for two seasons. Rainfall simulation was used to further examine runoff under growing season conditions. Four forage treatments (two annuals: triticale and a barley/triticale mixture and two perennials: smooth bromegrass and meadow bromegrass) and three grazing intensities (light, medium and heavy) were studied, each replicated four times. Total annual runoff was dominated by snowmelt. Generally runoff volumes, sediment yields, sediment ratios and runoff coefficients were all low. Bare ground increased with increasing grazing intensity and was significantly greater in annuals than perennials for all grazing intensities. Litter biomass decreased with increasing grazing intensity and was generally similar in all species for both years at heavy and medium grazing intensities. Results from the rainfall simulation corroborated those under natural rainfall conditions and generally indicated the sustainability of these grazing systems at this site. Key words: Forages, soil erosion, sustainability, rainfall simulation


Author(s):  
Anthony J. Parsons ◽  
Bruce Lascelles
Keyword(s):  

1994 ◽  
Vol 74 (1) ◽  
pp. 59-66 ◽  
Author(s):  
B. T. Bowman ◽  
G. J. Wall ◽  
D. J. King

The risk of surface-water contamination by herbicides is greatest following application to cropland when the active ingredients are at the maximum concentration and the soil is the most vulnerable to erosion following cultivation. This study determined the magnitude of surface runoff losses of herbicide and nutrients at, and subsequent to, application. The first of three weekly 10-min, 2.6-cm rainfalls were simulated on triplicated 1-m plots (a set) on which corn had been planted and the herbicide (metolachlor/atrazine, 1.5:1.0) and fertilizer (28% N at 123 kg ha−1) had just been applied. Identical simulations were applied to two other adjacent plot sets (protected from rainfall) 1 and 2 wk following herbicide application. Runoff (natural, simulated) was monitored for soil, nutrient and herbicide losses. Concentrations of total phosphorus in surface runoff water and nitrate N in field-filtered samples were not significantly influenced by the time of the rainfall simulation but exceeded provincial water-quality objectives. Atrazine and metolachlor runoff losses were greatest from simulated rainfall (about 5% loss) immediately following application. Subsequent simulated rainfall usually resulted in < 1% herbicide runoff losses. Herbicide concentrations in all plot runoff samples exceeded provincial drinking-water quality objectives. Since herbicide surface transport is primarily in the solution phase (not via association with soil particles), water-management conservation technologies are the key to retaining these chemicals on cropland. Key words: Herbicide, runoff, rainfall simulation, partitioning, water quality


2012 ◽  
Vol 48 (1) ◽  
Author(s):  
Rajeshwar Mehrotra ◽  
Seth Westra ◽  
Ashish Sharma ◽  
Ratnasingham Srikanthan

2010 ◽  
Vol 49 (5) ◽  
pp. 845-866 ◽  
Author(s):  
Chad Shouquan Cheng ◽  
Guilong Li ◽  
Qian Li ◽  
Heather Auld

Abstract An automated synoptic weather typing and stepwise cumulative logit/nonlinear regression analyses were employed to simulate the occurrence and quantity of daily rainfall events. The synoptic weather typing was developed using principal component analysis, an average linkage clustering procedure, and discriminant function analysis to identify the weather types most likely to be associated with daily rainfall events for the four selected river basins in Ontario. Within-weather-type daily rainfall simulation models comprise a two-step process: (i) cumulative logit regression to predict the occurrence of daily rainfall events, and (ii) using probability of the logit regression, a nonlinear regression procedure to simulate daily rainfall quantities. The rainfall simulation models were validated using an independent dataset, and the results showed that the models were successful at replicating the occurrence and quantity of daily rainfall events. For example, the relative operating characteristics score is greater than 0.97 for rainfall events with daily rainfall ≥10 or ≥25 mm, for both model development and validation. For evaluation of daily rainfall quantity simulation models, four correctness classifications of excellent, good, fair, and poor were defined, based on the difference between daily rainfall observations and model simulations. Across four selected river basins, the percentage of excellent and good simulations for model development ranged from 62% to 84% (of 20 individuals, 16 cases ≥ 70%, 7 cases ≥ 80%); the corresponding percentage for model validation ranged from 50% to 76% (of 20 individuals, 15 cases ≥ 60%, 6 cases ≥ 70%).


2004 ◽  
Vol 48 (3) ◽  
pp. 293-304
Author(s):  
José Carlos González-Hidalgo ◽  
Martín De Luís ◽  
Josep Raventós ◽  
Jordi Cortina ◽  
Juán Rafael Sánchez

2018 ◽  
Vol 19 (2) ◽  
pp. 729-740 ◽  
Author(s):  
Jiamei Sun ◽  
Chi-hua Huang ◽  
Guannan Han ◽  
Yafeng Wang

Sign in / Sign up

Export Citation Format

Share Document