Core-shell catalysts with CoMoS phase embedded in clay nanotubes for dibenzothiophene hydrodesulfurization

2021 ◽  
Author(s):  
Al.A. Pimerzin ◽  
A.V. Vutolkina ◽  
N.A. Vinogradov ◽  
V.A. Vinokurov ◽  
Yu.M. Lvov ◽  
...  
Keyword(s):  
2018 ◽  
Vol 90 (5) ◽  
pp. 825-832 ◽  
Author(s):  
Vladimir A. Vinokurov ◽  
Anna V. Stavitskaya ◽  
Yaroslav A. Chudakov ◽  
Aleksandr P. Glotov ◽  
Evgeniy V. Ivanov ◽  
...  

Abstract Natural halloysite clay nanotubes were used as a template for clay/Ru core-shell nanostructure synthesis. Ru-nanoparticles were produced via a ligand-assisted metal ion intercalation technique. Schiff bases formed from different organic compounds proved to be effective ligands for the metal interfacial complexation which then was converted to Ru particles. This produces a high amount of intercalated metal nanoparticles in the tube’s interior with more that 90% of the sample loaded with noble metal. Depending on the selection of organic linkers, we filled the tube’s lumen with 2 or 3.5-nm diameter Ru particles, or even larger metal clusters. Produced nanocomposites are very efficient in reactions of hydrogenation of aromatic compounds, as tested for phenol and cresols hydrogenation.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2015 ◽  
Vol 53 (4) ◽  
pp. 287-293
Author(s):  
Byung-Hyun Choi ◽  
Young Jin Kang ◽  
Sung-Hun Jung ◽  
Yong-Tae An ◽  
Mi-Jung Ji

2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2015 ◽  
Vol 30 (6) ◽  
pp. 610 ◽  
Author(s):  
ZHENG Guo-Qiang ◽  
ZHANG Wen-Chao ◽  
XU Xing ◽  
SHEN Rui-Qi ◽  
DENG Ji-Ping ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 261-OR
Author(s):  
FRANCIS KARANU ◽  
STEPHEN HARRINGTON ◽  
LINDSEY OTT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document