Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells

2019 ◽  
Vol 305 ◽  
pp. 180-194 ◽  
Author(s):  
Md Yousof Ali ◽  
Sumera Zaib ◽  
M. Mizanur Rahman ◽  
Susoma Jannat ◽  
Jamshed Iqbal ◽  
...  
2021 ◽  
Author(s):  
Zhihua Dou ◽  
Chen Liu ◽  
Xinhuan Feng ◽  
Yutong Xie ◽  
Haitao Yue ◽  
...  

CWP8, an active protein component isolated from camel milk, ameliorates liver injury in T2DM rats by activating the PI3K/Akt signaling pathway and stimulates glycogen synthesis to improve lipid accumulation in insulin-resistant HepG2 cells.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 1979-1989 ◽  
Author(s):  
Pablo Garrido ◽  
Javier Morán ◽  
Ana Alonso ◽  
Segundo González ◽  
Celestino González

Abstract The relationship between estrogen and some types of breast cancer has been clearly established. However, although several studies have demonstrated the relationship between estrogen and glucose uptake via phosphatidylinositol 3-kinase (PI3K)/Akt in other tissues, not too much is known about the possible cross talk between them for development and maintenance of breast cancer. This study was designed to test the rapid effects of 17β-estradiol (E2) or its membrane-impermeable form conjugated with BSA (E2BSA) on glucose uptake in a positive estrogen receptor (ER) breast cancer cell line, through the possible relationship between key components of the PI3K/Akt signaling pathway and acute steroid treatment. MCF-7 human breast cancer cells were cultured in standard conditions. Then 10 nM E2 or E2BSA conjugated were administered before obtaining the cell lysates. To study the glucose uptake, the glucose fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose was used. We report an ER-dependent activation of some of the key steps of the PI3K/Akt signaling pathway cascade that leads cells to improve some mechanisms that finally increase glucose uptake capacity. Our data suggest that both E2 and E2BSA enhance the entrance of the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose, and also activates PI3K/Akt signaling pathway, leading to translocation of glucose transporter 4 to the plasma membrane in an ERα-dependent manner. E2 enhances ER-dependent rapid signaling triggered, partially in the plasma membrane, allowing ERα-positive MCF-7 breast cancer cells to increase glucose uptake, which could be essential to meet the energy demands of the high rate of proliferation.


2019 ◽  
Vol 47 (4) ◽  
pp. 1685-1695
Author(s):  
Qiang Li ◽  
Zifan He ◽  
Jiming Liu ◽  
Jianlong Wu ◽  
Guixiang Tan ◽  
...  

Objectives Paris polyphylla 26 (PP-26) is a monomer purified from Paris polyphylla, which has traditionally been used as an antimicrobial, hemostatic, and anticancer agent in China. The anti-proliferation effect and underlying molecular mechanism of PP-26 were investigated in vitro. Methods The effects of PP-26 on various tumor cells were detected by MTT assay. PP-26-affected cell cycle and cell cycle-related proteins in HepG2 cells were detected by flow cytometry and western blotting, respectively. Apoptosis in response to PP-26 was assessed by Hoechst 33258 staining and flow cytometry. PP-26-affected apoptosis-related proteins and Akt signaling were detected by western blotting. The inhibitory effect of PP-26 on HepG2 cells, when combined with 5-fluorouracil (5-FU), was also assessed. Results PP-26 inhibited proliferation of HepG2 cells in a dose-dependent manner by triggering G2/M-phase arrest. Moreover, PP-26 induced apoptosis of HepG2 cells. Expression levels of apoptosis proteins caspase 9, caspase 3, PARP, Bcl-2, Bcl-xL, and Mcl-1 were downregulated, while the expression level of apoptosis protein Bax was upregulated. Expression levels of p-Akt, p-GSK-3β, and p-Foxo3 were downregulated. Combination with PP-26 enhanced 5-FU inhibition of HepG2 cell proliferation. Conclusions PP-26 triggers G2/M-phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document