Diffuse large B-cell lymphoma-derived exosomes push macrophage polarization toward M2 phenotype via GP130/STAT3 signaling pathway

2021 ◽  
pp. 109779
Author(s):  
Ling Huayu ◽  
Yang Zhong ◽  
Wang Panjun ◽  
Sun Yu ◽  
Ju Songguang ◽  
...  
2010 ◽  
Vol 51 (7) ◽  
pp. 1305-1314 ◽  
Author(s):  
Shahab Uddin ◽  
Rong Bu ◽  
Maqbool Ahmed ◽  
Azhar R. Hussain ◽  
Dahish Ajarim ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2963-2963
Author(s):  
Goldi A Kozloski ◽  
Xiaoyu Jiang ◽  
Shruti Bhatt ◽  
Rita Shaknovich ◽  
Ari M Melnick ◽  
...  

Abstract Introduction: Diffuse large B-cell lymphoma (DLBCL) is subdivided into the germinal center B-like (GCB) and activated B cell-like (ABC) subtypes by gene expression profiling, and these subtypes exhibit different clinical outcomes and signaling pathway deregulations. Compared to the GCB, the ABC-DLBCL subtype displays a more aggressive clinical course and shorter patient survival. Constitutive nuclear factor kappa-B (NF-kB) activity is often associated with the ABC-DLBCL subtype, however recent studies suggest that NF-kB signaling activation is also observed to a lower extent in the GCB-DLBCL subtype (Lina Odqvist et al. 2014). miRNAs have diagnostic and prognostic value in disease classification, and growing evidence implicates miRNAs in tumorigenesis, tumor maintenance, and dissemination through their ability to modulate the expression of critical genes and signaling networks. We previously demonstrated that miRNA-181a expression correlates with longer survival in patients treated with R-CHOP, independent of established clinical and molecular predictors. However, the molecular and cellular mechanisms underlying the association between miRNA-181a expression and improved prognosis in DLBCL patients are currently unknown. Herein we analyzed the role of miRNA-181a in DLBCL pathogenesis. Results:Quantitative RT-PCR analyses demonstrate higher endogenous miRNA-181a levels in centroblasts than in plasmablasts. Concordantly, endogenous miRNA-181a levels were significantly higher in GCB DLBCL cell lines and primary tumors compared with ABC DLBCL. These expression differences could not be attributed to distinct DNA methylation signatures in the miRNA-181a promoters (Chromosomes 1, 9) or regulatory elements as analyzed by Mass Array Sequenom Epityping. In search for putative miRNA-181a targets we identified 5 genes (CARD11, NFKB1A (IKBα), NFKB1 (p105/p50), RELA (p65), and REL (CREL)) within the NF-kB signaling pathway. Analyses of these targets show a decrease in the levels of these proteins and mRNAs in ABC and GCB DLBCL cell lines ectopically expressing miRNA-181a compared with scramble control plasmid. Luciferase reporter analyses encoding the respective wild type or mutated 3′UTR sequences demonstrate direct and specific targeting of these transcripts with the exception of RELA. Analysis of the net effect of miRNA-181a on NF-kB signaling using NF-kB luciferase reporter demonstrate significant decrease in NF-kB signaling. Concordantly, anti-miRNA-181a transfection led to increased NF-kB luciferase reporter activity. Moreover, western blot analyses of cytoplasmic and nuclear fractions showed a decrease in the levels of the transcription factors CREL and p50 in both cellular compartments, a decrease in the binding to DNA at NF-kB binding motifs, and a consequent decrease in NF-kB target gene transcription in the miRNA-181a expressing cells compared with scramble control. Together these studies point to miRNA-181a-mediated repression of NF-kB signaling in DLBCLs. Ectopic miRNA-181a expression led to a decrease in cell proliferation and an increase in cell death in both DLBCL subtypes, but this effect was more pronounced in the ABC DLBCL cell lines. The miRNA-181a-mediated increase in cell apoptosis could not be rescued by BCL2 co-transfection, an anti-apoptotic protein that was previously established as a direct miRNA-181a target. Analyses of miRNA-181a effects in NOD/SCID mice demonstrated that in vivo miRNA-181a induction in GCB and ABC human DLBCL xenografts led to decreased tumor growth and significantly longer animal survival. Notably, survival was prolonged in both GCB and ABC DLBCL bearing animals. Figure 1 Figure 1. Conclusions: miRNA-181a directly suppress the NF-kB signaling pathway and lead to increased tumor cell death in both DLBCL subtypes suggesting that NF-kB deregulation is present in both tumor subtypes. However, the lower miRNA-181a expression level in the ABC DLBCL subtype may contribute to the higher NF-kB signaling activity that is observed in this subtype. Furthermore, our study provides a plausible explanation for the association between high miRNA-181a expression and longer survival of DLBCL patients. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Xu ◽  
Ting Wei ◽  
Weijie Zhong ◽  
Rosalind Ang ◽  
Ye Lei ◽  
...  

Abstract Background Non-germinal center B-cell-like diffuse large B-cell lymphoma (non-GCB-DLBCL) has worse clinical outcome than GCB-DLBCL, and some relapsed/refractory non-GCB-DLBCL (R/R non-GCB-DLBCL) are even resistant to CD20 monoclonal antibody (rituximab). Bruton’s tyrosine kinase inhibitors (BTKis) are new drugs for B-cell lymphoma. BTKis can promote apoptosis of DLBCL by inactivating nuclear transcription factor κB (NFκB) signaling pathway. Cylindromatosis (CYLD) is a tumor suppressor and ubiquitinase. CYLD can inactivate NFκB signaling pathway through ubiquitination and regulate the apoptosis of hematological tumors. The ubiquitination of CYLD can be regulated by phosphorylation, suggesting that the regulation of CYLD phosphorylation can be a potential mechanism to promote the apoptosis of hematological tumors. Therefore, we hypothesized that BTKis could promote the apoptosis of non-GCB-DLBCL by regulating the phosphorylation of CYLD, especially in rituximab resistant cases, and we proved this hypothesis through both in vivo and in vitro experiments. Methods The baseline expression levels of CYLD phosphorylation in non-GCB-DLBCL patients and cell lines were detected by Western Blotting. The non-GCB-DLBCL cell lines were treated with BTKis, and apoptosis induced by BTKis treatment was detected by Western blotting, cell viability assay and Annexin V assay. To verify whether the effect of BTKis on apoptosis in non-GCN-DLBCL cells is CYLD dependent, the expression of CYLD was knocked down by lentiviral shRNAs. To verify the effect of BTKis on the phosphorylation of CYLD and the apoptosis in vivo and in rituximab resistant non-GCB-DLBCL, the xeograft model and rituximab resistant non-GCB-DLBCL cells were generated by tumor cell inoculation and escalation of drug concentrations, respectively. Results BTKis induced apoptosis by down-regulating CYLD phosphorylationin in non GCB-DLBCL, xenograft mouse model, and rituximab-resistant cells, and this effect could be enhanced by rituximab. Knocking-down CYLD reversed apoptosis which was induced by BTKis. BTKis induced CYLD-dependent apoptosis in non-GCB-DLBCL including in rituximab-resistant cells. Conclusions The present results indicated that CYLD phosphorylation is a potential clinical therapeutic target for non-GCB-DLBCL, especially for rituximab-resistant relapsed/refractory cases.


2020 ◽  
Vol 19 (8) ◽  
pp. 1619-1623
Author(s):  
Zhixiang Su ◽  
Bin Yu ◽  
Zhiping Deng ◽  
Haifeng Sun

Purpose: To investigate the effect of isoliquiritigenin (ISL) on diffuse large B-cell lymphoma (DLBCL) cells and its underlying mechanism of action.Methods: The DLBCL cell line OCI-Ly19 was used in this study. Cell proliferation was measured by MTT assay. Apoptosis was evaluated using flow cytometry. Phosphorylation of Akt and mTOR was assessed using Western blotting.Results: DLBCL cell proliferation was suppressed by ISL in a concentration-dependent manner. The number of apoptotic cells increased following ISL treatment in a concentration-dependent manner (p < 0.05). ISL treatment also stopped the cell cycle at the G1 phase in a concentration-dependent manner. Western blot analysis indicated that there was no significant Akt and mTOR expression in cells treated with 10, 20, or 50 μM ISL (p < 0.05). However, Akt and mTOR phosphorylation was upregulated following treatment with 10, 20, or 50 μM ISL in a concentration-dependent manner (p < 0.05).Conclusion: The results demonstrate that ISL inhibits DLBCL cell proliferation and promotes cell apoptosis by blocking the cell cycle transition from the G1 to S phase, which is mediated by the inactivation of the Akt/mTOR signaling pathway. Keywords: Isoliquiritigenin, Cell survival, Diffuse large B-cell lymphoma, Akt/mTOR signaling pathway


Sign in / Sign up

Export Citation Format

Share Document