scholarly journals Characterization of a monoacylglycerol lipase in the medicinal leech, Hirudo verbana

Author(s):  
Emily Kabeiseman ◽  
Riley Paulsen ◽  
Brian D. Burrell
2008 ◽  
Vol 74 (19) ◽  
pp. 6151-6154 ◽  
Author(s):  
Alison S. Laufer ◽  
Mark E. Siddall ◽  
Joerg Graf

ABSTRACT FDA-approved, postoperative use of leeches can lead to bacterial infections. In this study, we used culture-dependent and culture-independent approaches to characterize the digestive-tract microbiota of Hirudo orientalis. Surprisingly, two Aeromonas species, A. veronii and A. jandaei, were cultured. Uncultured Rikenella-like bacteria were most similar to isolates from Hirudo verbana.


2018 ◽  
Vol 54 (5) ◽  
pp. 56-62
Author(s):  
L. V. Chornaya ◽  
L. A. Kovalchuk ◽  
N. V. Mikshevich

2021 ◽  
Vol 22 (11) ◽  
pp. 6148
Author(s):  
Matteo Miceli ◽  
Silvana Casati ◽  
Pietro Allevi ◽  
Silvia Berra ◽  
Roberta Ottria ◽  
...  

A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin, a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly sensitive substrate for MAGL in an assay developed for this purpose. We present here a new method based on the enzymatic cleavage of arachidonic acid with luciferin release using human Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated, and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is much more sensitive and should suffer fewer biological interferences in cells lysate applications than typical fluorometric methods. The assay was validated for the identification and characterization of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the range of applications to cell-based assays.


2020 ◽  
Vol 17 (168) ◽  
pp. 20200300
Author(s):  
Tim Kampowski ◽  
Lara-Louise Thiemann ◽  
Lukas Kürner ◽  
Thomas Speck ◽  
Simon Poppinga

Haematophagous ectoparasites must ensure a reliable hold to their host during blood meals and, therefore, have evolved a broad spectrum of versatile and effective attachment mechanisms. The Mediterranean medicinal leech ( Hirudo verbana ), for example, uses suction on both smooth and textured air-tight substrates. However, preliminary studies showed that H. verbana is also capable of attaching itself to air-permeable substrates, where suction does not work. Using high-speed videography and mechanical tests, we comparatively investigated the attachment of H. verbana on both smooth and textured air-tight as well as on porous artificial substrates, also considering the influence of mucus on sucker surfaces. In general, the leech-specific locomotion cycle did not differ between the tested surfaces, and the leeches were able to reliably attach to both air-tight and porous substrates. From our results, we conclude that suction is presumably the primary attachment mechanism of H. verbana . However, secondary mechanisms such as mechanical interlocking with surface asperities and pores or capillary forces occurring at the interface between the mucus-covered suckers and the substratum are also employed. In any case, the rich repertoire of applicable attachment principles renders the organs of H. verbana functionally highly resilient.


2016 ◽  
Vol 13 (117) ◽  
pp. 20160096 ◽  
Author(s):  
Tim Kampowski ◽  
Laura Eberhard ◽  
Friederike Gallenmüller ◽  
Thomas Speck ◽  
Simon Poppinga

Medicinal leeches use their suction discs for locomotion, adhesion to the host and, in the case of the anterior disc, also for blood ingestion. The biomechanics of their suction-based adhesion systems has been little understood until now. We investigated the functional morphology of the anterior and posterior suckers of Hirudo verbana by using light and scanning electron microscopy. Furthermore, we analysed the adhesion qualitatively and quantitatively by conducting behavioural and mechanical experiments. Our high-speed video analyses provide new insights into the attachment and detachment processes and we present a detailed description of the leech locomotion cycle. Pull-off force measurements of the anterior and posterior suction organs on seven different substrates under both aerial and water-submersed conditions reveal a significant influence of the surrounding medium, the substrate surface roughness and the tested organ on attachment forces and tenacities.


2015 ◽  
Vol 5 ◽  
Author(s):  
Brittany M. Ott ◽  
Allen Rickards ◽  
Lauren Gehrke ◽  
Rita V. M. Rio
Keyword(s):  

2017 ◽  
Author(s):  
Andrew M. Lehmkuhl ◽  
Arunkumar Muthusamy ◽  
Daniel A. Wagenaar

Summary statementCues from water movement help aquatic predators find their prey. We study how the nervous system of the medicinal leech processes visual and mechanical information derived from surface waves.AbstractSensitivity to water waves is a key modality by which aquatic predators can detect and localize their prey. For one such predator, the medicinal leech, Hirudo verbana, behavioral responses to visual and mechanical cues from water waves are well documented. Here, we quantitatively characterized the response patterns of a multisensory interneuron, the S cell, to mechanically and visually cued water waves. The frequency dependence of the S-cell response matched the behavioral response well, in that sensitivity was higher for low frequencies in the visual modality and for high frequencies in the mechanical modality. We demonstrated that neither the cephalic ganglia nor the tail brain is required for the S cell to respond to visually cued water waves. The direction of spike propagation within the S- cell system did follow the direction of wave propagation under certain circumstances, but it is unlikely that downstream neuronal targets can use this information. In terms of overall firing rate, the S cell response was not direction selective. Accordingly we propose a role for the S cell in the detection of waves but not in the localization of their source.


Sign in / Sign up

Export Citation Format

Share Document