Toxicity and bio-distribution of carbon dots after single inhalation exposure in vivo

2018 ◽  
Vol 29 (6) ◽  
pp. 895-898 ◽  
Author(s):  
Yue Yang ◽  
Xiangling Ren ◽  
Zhenning Sun ◽  
Changhui Fu ◽  
Tianlong Liu ◽  
...  
2021 ◽  
Author(s):  
Lijuan Liu ◽  
Shengting Zhang ◽  
Xiaodan Zheng ◽  
Hongmei Li ◽  
Qi Chen ◽  
...  

Fusobacterium nucleatum has been employed for the first time to synthesize fluorescent carbon dots which could be applied for the determination of Fe3+ ions in living cells and bioimaging in vitro and in vivo with excellent biocompatibility.


2021 ◽  
Vol 123 ◽  
pp. 112022
Author(s):  
Xiangping Wen ◽  
Guangming Wen ◽  
Wenyan Li ◽  
Zhonghua Zhao ◽  
Xine Duan ◽  
...  
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Maud Weiss ◽  
Jiahui Fan ◽  
Mickaël Claudel ◽  
Luc Lebeau ◽  
Françoise Pons ◽  
...  

With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches. We first investigated the effect of a single administration of CDs on mouse airways. We showed that CDs induce an acute lung inflammation and identified airway macrophages as target cells of CDs. Then, we studied the cellular responses induced by CDs in an in vitro model of macrophages. We observed that CDs are internalized by these cells (molecular initial event) and induce a series of key events, including loss of lysosomal integrity and mitochondrial disruption (organelle responses), as well as oxidative stress, inflammasome activation, inflammatory cytokine upregulation and macrophage death (cellular responses). All these effects triggering lung inflammation as tissular response may lead to acute lung injury.


Author(s):  
Shu-Chieh Hu ◽  
Matthew S Bryant ◽  
Estatira Sepehr ◽  
Hyun-Ki Kang ◽  
Raul Trbojevich ◽  
...  

Abstract The tobacco-specific nitrosamine NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone] is found in tobacco products and tobacco smoke. NNK is a potent genotoxin and human lung carcinogen; however, there are limited inhalation data for the toxicokinetics (TK) and genotoxicity of NNK in vivo. In the present study, a single dose of 5x10−5, 5x10−3, 0.1, or 50 mg/kg body weight (BW) of NNK, 75% propylene glycol (vehicle control), or air (sham control) was administered to male Sprague-Dawley (SD) rats (9-10 weeks age) via nose-only inhalation (INH) exposure for 1 hour. For comparison, the same doses of NNK were administered to male SD rats via intraperitoneal (IP) injection and oral gavage (PO). Plasma, urine, and tissue specimens were collected at designated timepoints and analyzed for levels of NNK and its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and tissue levels of DNA adduct O6-methylguanine by LC/MS/MS. TK data analysis was performed using a non-linear regression program. For the genotoxicity subgroup, tissues were collected at 3 hours post-dosing for comet assay analysis. Overall, the TK data indicated that NNK was rapidly absorbed and metabolized extensively to NNAL after NNK administration via the three routes. The IP route had the greatest systemic exposure to NNK. NNK metabolism to NNAL appeared to be more efficient via INH than IP or PO. NNK induced significant increases in DNA damage in multiple tissues via the three routes. The results of this study provide new information and understanding of the toxicokinetics and genotoxicity of NNK.


1991 ◽  
Vol 29 (2) ◽  
pp. 203-205 ◽  
Author(s):  
Harald Merckelbach ◽  
Peter de Jong ◽  
Arnoud Arntz

Mutagenesis ◽  
2004 ◽  
Vol 19 (3) ◽  
pp. 215-222 ◽  
Author(s):  
Leslie Recio ◽  
Maria Donner ◽  
Diane Abernethy ◽  
Linda Pluta ◽  
Ann‐Marie Steen ◽  
...  

1992 ◽  
Vol 8 (6) ◽  
pp. 407-413 ◽  
Author(s):  
Adam B. Czuppon ◽  
Boleslaw Marczynski ◽  
Xaver Baur

Serum samples of 10 workers undergoing occupational type inhalative challenge tests by toluene diisocyanate (TDI) were investigated by anion-exchange fast-protein-liquid-chromatography (FPLC) and polyacrylamide-gel electrophoresis (PAGE-SDS). Their serum chromatography profiles were compared to those of 20 unexposed individuals. The peak height of the first prealbumin peak in sera of workers after inhalative challenge tests was significantly different (p > 0, 01 Chi-square test) compared to that obtained before exposure and to that of unexposed subjects. In addition, qualitative changes of these peaks were also noted in sera of workers exposed to TDI. In the cases of exposed individuals, that peak was more diffuse with some shoulders and less symmetric in appearance. Similarly, PAGE-SDS of the serum proteins, followed by silver nitrate staining, revealed a different banding pattern after in vivo TDI exposure. One of the serum components at approximately 15 kD showed an increase of staining intensity after exposure (n = 10), compared to unexposed subjects or to patients before exposure. This serum fraction has not yet been identified. The results here demonstrate that it is possible to detect changes of serum proteins in TDI-exposed individuals within a relatively short analysis time. This could be useful for biological monitoring of exposure, since no method for such is yet available.


Sign in / Sign up

Export Citation Format

Share Document