scholarly journals Shen-Qi-Wan protects the renal peritubular capillary injury from adenine-mediated damage by upregulating Aquaporin 1

Author(s):  
Yuting Bao ◽  
Yehui Zhang ◽  
Yuanxiao Yang ◽  
Xueming Chen ◽  
Luning Lin ◽  
...  
2007 ◽  
Vol 130 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Artem B. Mamonov ◽  
Rob D. Coalson ◽  
Mark L. Zeidel ◽  
John C. Mathai

Determining the mechanisms of flux through protein channels requires a combination of structural data, permeability measurement, and molecular dynamics (MD) simulations. To further clarify the mechanism of flux through aquaporin 1 (AQP1), osmotic pf (cm3/s/pore) and diffusion pd (cm3/s/pore) permeability coefficients per pore of H2O and D2O in AQP1 were calculated using MD simulations. We then compared the simulation results with experimental measurements of the osmotic AQP1 permeabilities of H2O and D2O. In this manner we evaluated the ability of MD simulations to predict actual flux results. For the MD simulations, the force field parameters of the D2O model were reparameterized from the TIP3P water model to reproduce the experimentally observed difference in the bulk self diffusion constants of H2O vs. D2O. Two MD systems (one for each solvent) were constructed, each containing explicit palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE) phospholipid molecules, solvent, and AQP1. It was found that the calculated value of pf for D2O is ∼15% smaller than for H2O. Bovine AQP1 was reconstituted into palmitoyl-oleoyl-phosphatidylcholine (POPC) liposomes, and it was found that the measured macroscopic osmotic permeability coefficient Pf (cm/s) of D2O is ∼21% lower than for H2O. The combined computational and experimental results suggest that deuterium oxide permeability through AQP1 is similar to that of water. The slightly lower observed osmotic permeability of D2O compared to H2O in AQP1 is most likely due to the lower self diffusion constant of D2O.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 639
Author(s):  
Lisa Allnoch ◽  
Georg Beythien ◽  
Eva Leitzen ◽  
Kathrin Becker ◽  
Franz-Josef Kaup ◽  
...  

Vascular changes represent a characteristic feature of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leading to a breakdown of the vascular barrier and subsequent edema formation. The aim of this study was to provide a detailed characterization of the vascular alterations during SARS-CoV-2 infection and to evaluate the impaired vascular integrity. Groups of ten golden Syrian hamsters were infected intranasally with SARS-CoV-2 or phosphate-buffered saline (mock infection). Necropsies were performed at 1, 3, 6, and 14 days post-infection (dpi). Lung samples were investigated using hematoxylin and eosin, alcian blue, immunohistochemistry targeting aquaporin 1, CD3, CD204, CD31, laminin, myeloperoxidase, SARS-CoV-2 nucleoprotein, and transmission electron microscopy. SARS-CoV-2 infected animals showed endothelial hypertrophy, endothelialitis, and vasculitis. Inflammation mainly consisted of macrophages and lower numbers of T-lymphocytes and neutrophils/heterophils infiltrating the vascular walls as well as the perivascular region at 3 and 6 dpi. Affected vessels showed edema formation in association with loss of aquaporin 1 on endothelial cells. In addition, an ultrastructural investigation revealed disruption of the endothelium. Summarized, the presented findings indicate that loss of aquaporin 1 entails the loss of intercellular junctions resulting in paracellular leakage of edema as a key pathogenic mechanism in SARS-CoV-2 triggered pulmonary lesions.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kristyna Pluhackova ◽  
Andreas Horner

Abstract Background Lipid-protein interactions stabilize protein oligomers, shape their structure, and modulate their function. Whereas in vitro experiments already account for the functional importance of lipids by using natural lipid extracts, in silico methods lack behind by embedding proteins in single component lipid bilayers. However, to accurately complement in vitro experiments with molecular details at very high spatio-temporal resolution, molecular dynamics simulations have to be performed in natural(-like) lipid environments. Results To enable more accurate MD simulations, we have prepared four membrane models of E. coli polar lipid extract, a typical model organism, each at all-atom (CHARMM36) and coarse-grained (Martini3) representations. These models contain all main lipid headgroup types of the E. coli inner membrane, i.e., phosphatidylethanolamines, phosphatidylglycerols, and cardiolipins, symmetrically distributed between the membrane leaflets. The lipid tail (un)saturation and propanylation stereochemistry represent the bacterial lipid tail composition of E. coli grown at 37∘C until 3/4 of the log growth phase. The comparison of the Simple three lipid component models to the complex 14-lipid component model Avanti over a broad range of physiologically relevant temperatures revealed that the balance of lipid tail unsaturation and propanylation in different positions and inclusion of lipid tails of various length maintain realistic values for lipid mobility, membrane area compressibility, lipid ordering, lipid volume and area, and the bilayer thickness. The only Simple model that was able to satisfactory reproduce most of the structural properties of the complex Avanti model showed worse agreement of the activation energy of basal water permeation with the here performed measurements. The Martini3 models reflect extremely well both experimental and atomistic behavior of the E. coli polar lipid extract membranes. Aquaporin-1 embedded in our native(-like) membranes causes partial lipid ordering and membrane thinning in its vicinity. Moreover, aquaporin-1 attracts and temporarily binds negatively charged lipids, mainly cardiolipins, with a distinct cardiolipin binding site in the crevice at the contact site between two monomers, most probably stabilizing the tetrameric protein assembly. Conclusions The here prepared and validated membrane models of E. coli polar lipids extract revealed that lipid tail complexity, in terms of double bond and cyclopropane location and varying lipid tail length, is key to stabilize membrane properties over a broad temperature range. In addition, they build a solid basis for manifold future simulation studies on more realistic lipid membranes bridging the gap between simulations and experiments.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dita Aditianingsih ◽  
Chaidir Arif Mochtar ◽  
Aida Lydia ◽  
Nuryati Chairani Siregar ◽  
Nur Ita Margyaningsih ◽  
...  

Abstract Background Laparoscopic nephrectomy is a preferred technique for living kidney donation. However, positive-pressure pneumoperitoneum may have an unfavorable effect on the remaining kidney and other distant organs due to inflamed vascular endothelium and renal tubular cell injury in response to increased systemic inflammation. Early detection of vascular endothelial and renal tubular response is needed to prevent further kidney injury due to increased intraabdominal pressure induced by pneumoperitoneum. Transperitoneal laparoscopic living donor nephrectomy represented a human model of mild increasing intraabdominal pressure. This study aimed to assess the effect of increased intraabdominal pressure on vascular endothelium and renal tubular cells by comparing the effects of low and standard pressure pneumoperitoneum on vascular endothelial growth factor receptor-2 (VEGFR-2) expression and the shedding of syndecan-1 as the early markers to a systemic inflammation. Methods We conducted a prospective randomized study on 44 patients undergoing laparoscopic donor nephrectomy. Subjects were assigned to standard (12 mmHg) or low pressure (8 mmHg) groups. Baseline, intraoperative, and postoperative plasma interleukin-6, syndecan-1, and sVEGFR-2 were quantified by ELISA. Syndecan-1 and VEGFR-2 expression were assessed immunohistochemically in renal cortex tissue. Renal tubule and peritubular capillary ultrastructures were examined using electron microscopy. Perioperative hemodynamic changes, end-tidal CO2, serum creatinine, blood urea nitrogen, and urinary KIM-1 were recorded. Results The low pressure group showed lower intra- and postoperative heart rate, intraoperative plasma IL-6, sVEGFR-2 levels and plasma syndecan-1 than standard pressure group. Proximal tubule syndecan-1 expression was higher in the low pressure group. Proximal-distal tubules and peritubular capillary endothelium VEGFR-2 expression were lower in low pressure group. The low pressure group showed renal tubule and peritubular capillary ultrastructure with intact cell membranes, clear cell boundaries, and intact brush borders, while standard pressure group showed swollen nuclei, tenuous cell membrane, distant boundaries, vacuolizations, and detached brush borders. Conclusion The low pressure pneumoperitoneum attenuated the inflammatory response and resulted in reduction of syndecan-1 shedding and VEGFR-2 expression as the renal tubular and vascular endothelial proinflammatory markers to injury due to a systemic inflammation in laparoscopic nephrectomy. Trial registration ClinicalTrials.gov NCT:03219398, prospectively registered on July 17th, 2017.


1997 ◽  
Vol 272 (5) ◽  
pp. F579-F586 ◽  
Author(s):  
T. L. Pallone ◽  
M. R. Turner

Molecular sieving of small solutes by outer medullary descending vasa recta (OMDVR). Descending vasa recta (DVR) plasma equilibrates with the medullary interstitium by volume efflux (Jv), as well as by influx of solutes. Jv is driven by transmural osmotic pressure gradients due to small hydrophilic solutes (delta pi s), NaCl and urea. DVR endothelium probably contains a "water-only" pathway most likely mediated by the aquaporin-1 (AQP1) water channel. We measured the ability of microperfused OMDVR to concentrate lumenal 22Na and [3H]raffinose when Jv was driven by transmural NaCl gradients. Collectate-to-perfusate ratios of 2 x 10(6) M(r) fluorescein isothiocyanate-labeled dextran volume marker (RDx), 22Na (RNa), and [3H]raffinose (Rraf) were measured in the absence and presence of Jv. During volume efflux (Jv > 0), RDx was 1.37 +/- 0.31. RNa increased from 0.64 +/- 0.03 when Jv = 0 to 0.82 +/- 0.05 when Jv > 0 and Rraf increased from 0.83 +/- 0.03 to 1.13 +/- 0.05: Mathematical simulations predict RNa and Rraf most accurately when the OMDVR reflection coefficient to the tracers is assigned a value near unity. This indicates that the OMDVR wall contains a pathway for osmotic volume flux that excludes small hydrophilic solutes, a behavior consistent with that of aquaporins.


2009 ◽  
Vol 386 (3) ◽  
pp. 483-487 ◽  
Author(s):  
Shusaku Hayashi ◽  
Nobuaki Takahashi ◽  
Naoto Kurata ◽  
Aya Yamaguchi ◽  
Hirofumi Matsui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document