scholarly journals Phenotypical and genetical characterization of the Mad allele during Drosophila wing development

2022 ◽  
Vol 169 ◽  
pp. 203761
Author(s):  
Yao Chen ◽  
Tao Liu ◽  
Jie Shen ◽  
Junzheng Zhang
Nature ◽  
10.1038/39362 ◽  
1997 ◽  
Vol 389 (6651) ◽  
pp. 627-631 ◽  
Author(s):  
Kazuhide Tsuneizumi ◽  
Takuya Nakayama ◽  
Yuko Kamoshida ◽  
Thomas B. Kornberg ◽  
Jan L. Christian ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2951-2962 ◽  
Author(s):  
T. Klein ◽  
A.M. Arias

The Notch signalling pathway plays an important role during the development of the wing primordium, especially of the wing blade and margin. In these processes, the activity of Notch is controlled by the activity of the dorsal specific nuclear protein Apterous, which regulates the expression of the Notch ligand, Serrate, and the Fringe signalling molecule. The other Notch ligand, Delta, also plays a role in the development and patterning of the wing. It has been proposed that Fringe modulates the ability of Serrate and Delta to signal through Notch and thereby restricts Notch signalling to the dorsoventral boundary of the developing wing blade. Here we report the results of experiments aimed at establishing the relationships between Fringe, Serrate and Delta during wing development. We find that Serrate is not required for the initiation of wing development but rather for the expansion and early patterning of the wing primordium. We provide evidence that, at the onset of wing development, Delta is under the control of apterous and might be the Notch ligand in this process. In addition, we find that Fringe function requires Su(H). Our results suggest that Notch signalling during wing development relies on careful balances between positive and dominant negative interactions between Notch ligands, some of which are mediated by Fringe.


2007 ◽  
Vol 308 (2) ◽  
pp. 534-546 ◽  
Author(s):  
Alysia D. Vrailas-Mortimer ◽  
Neena Majumdar ◽  
Ginnene Middleton ◽  
Evan M. Cooke ◽  
Daniel R. Marenda

Biology Open ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. bio029637 ◽  
Author(s):  
Zehua Wang ◽  
Jialan Lyu ◽  
Fang Wang ◽  
Chen Miao ◽  
Zi Nan ◽  
...  

2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Jun Zhou ◽  
Yasamin Dabiri ◽  
Rodrigo A. Gama-Brambila ◽  
Shahrouz Ghafoory ◽  
Mukaddes Altinbay ◽  
...  

Transforming growth factor β (TGF-β) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-β signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-β targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-β/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-β/SMAD3 signaling in human cells and Drosophila wing development.


Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 3925-3934 ◽  
Author(s):  
C. Rodriguez-Esteban ◽  
J.W. Schwabe ◽  
J.D. Pena ◽  
D.E. Rincon-Limas ◽  
J. Magallon ◽  
...  

apterous specifies dorsal cell fate and directs outgrowth of the wing during Drosophila wing development. Here we show that, in vertebrates, these functions appear to be performed by two separate proteins. Lmx-1 is necessary and sufficient to specify dorsal identity and Lhx2 regulates limb outgrowth. Our results suggest that Lhx2 is closer to apterous than Lmx-1, yet, in vertebrates, Lhx2 does not specify dorsal cell fate. This implies that in vertebrates, unlike Drosophila, limb outgrowth can be dissociated from the establishment of the dorsoventral axis.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4615-4622 ◽  
Author(s):  
Ulrich Weihe ◽  
Marco Milán ◽  
Stephen M. Cohen

Apterous is a LIM-homeodomain protein that confers dorsal compartment identity in Drosophila wing development. Apterous activity requires formation of a complex with a co-factor, Chip/dLDB. Apterous activity is regulated during wing development by dLMO, which competes with Apterous for complex formation. Here, we present evidence that complex formation between Apterous, Chip and DNA stabilizes Apterous protein in vivo. We also report that a difference in the ability of Chip to bind the LIM domains of Apterous and dLMO contributes to regulation of activity levels in vivo.


Sign in / Sign up

Export Citation Format

Share Document