wing growth
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Jun Zhou ◽  
Yasamin Dabiri ◽  
Rodrigo A. Gama-Brambila ◽  
Shahrouz Ghafoory ◽  
Mukaddes Altinbay ◽  
...  

Transforming growth factor β (TGF-β) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-β signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-β targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-β/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-β/SMAD3 signaling in human cells and Drosophila wing development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shinya Matsuda ◽  
Jonas V. Schaefer ◽  
Yusuke Mii ◽  
Yutaro Hori ◽  
Dimitri Bieli ◽  
...  

AbstractHow morphogen gradients control patterning and growth in developing tissues remains largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two membrane-tethered protein binders that manipulate different aspects of Decapentaplegic (Dpp), a morphogen required for overall patterning and growth of the Drosophila wing. One is “HA trap” based on a single-chain variable fragment (scFv) against the HA tag that traps HA-Dpp to mainly block its dispersal, the other is “Dpp trap” based on a Designed Ankyrin Repeat Protein (DARPin) against Dpp that traps Dpp to block both its dispersal and signaling. Using these tools, we found that, while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that dpp transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient dpp source cells render the anterior compartment robust against the absence of Dpp dispersal. Furthermore, despite a critical requirement of dpp for the overall wing growth, neither Dpp dispersal nor direct signaling is critical for lateral wing growth after wing pouch specification. These results challenge the long-standing dogma that Dpp dispersal is strictly required to control and coordinate overall wing patterning and growth.


2021 ◽  
Author(s):  
Shu Yang ◽  
Xuefeng Wu ◽  
Euphrosyne I. Daoutidou ◽  
Ya Zhang ◽  
MaryJane Shimell ◽  
...  

Hedgehog (Hh) and bone morphogenetic proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron Derived Neurotrophic Factor (NDNF) involved in Congenital Hypogonadotropic Hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-depend biphasic BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine tunes both the range and strength of BMP signaling in the developing Drosophila wing.


2021 ◽  
Author(s):  
Chunyan Fang ◽  
Yaqun Xin ◽  
Tao Sun ◽  
Antonia Monteiro ◽  
Zhanfeng Ye ◽  
...  

A long-standing view in the field of evo-devo is that insect forewings develop without any Hox gene input. The Hox gene Antennapedia (Antp), despite being expressed in the thoracic segments of insects, has no effect on wing development. This view has been obtained from studies in two main model species, Drosophila and Tribolium. Here, we show that partial loss of function of Antp resulted in reduced and malformed adult wings in Bombyx, Drosophila, and Tribolium. Antp mediates wing growth in Bombyx by directly regulating the ecdysteriod biosynthesis enzyme gene (shade) in the wing tissue, which leads to local production of the growth hormone 20E. In turn, 20E signaling also up-regulates Antp. Additional targets of Antp are wing cuticular protein genes CPG24, CPH28, and CPG9, essential for wing development. We propose, thus, that insect wing development occurs in an Antp-dependent manner.


2021 ◽  
Author(s):  
Takahiro Ohde ◽  
Taro Mito ◽  
Teruyuki Niimi

ABSTRACTThe origin and evolution of insect wings remain enigmatic after a century-long discussion. Molecular dissection of wing development in hemimetabolous insects, in which the first functional wings evolved, is key to understand genetic changes required for wing evolution. We investigatedDrosophilawing marker genes in the cricket,Gryllus bimaculatus, and foundapterousandvestigialshow critical functions in nymphal tergal identity and margin formation, respectively. We further demonstrate that margin cells in the lateral-anterior tergal region constitute a growth organizer of wing blades. Transcriptome and RNAi analyses unveiled that Wnt, Fat-Dachsous, and Hippo pathways are involved in disproportional growth ofGrylluswings. Our data collectively support the idea that tergal margin cells of a wingless ancestor gave rise to the body wall extension required for evolution of the first powered flight.


PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001111
Author(s):  
Myriam Zecca ◽  
Gary Struhl

Development of the Drosophila wing—a paradigm of organ development—is governed by 2 morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Both proteins are produced by defined subpopulations of cells and spread outwards, forming gradients that control gene expression and cell pattern as a function of concentration. They also control growth, but how is unknown. Most studies have focused on Dpp and yielded disparate models in which cells throughout the wing grow at similar rates in response to the grade or temporal change in Dpp concentration or to the different amounts of Dpp “equalized” by molecular or mechanical feedbacks. In contrast, a model for Wg posits that growth is governed by a progressive expansion in morphogen range, via a mechanism in which a minimum threshold of Wg sustains the growth of cells within the wing and recruits surrounding “pre-wing” cells to grow and enter the wing. This mechanism depends on the capacity of Wg to fuel the autoregulation of vestigial (vg)—the selector gene that specifies the wing state—both to sustain vg expression in wing cells and by a feed-forward (FF) circuit of Fat (Ft)/Dachsous (Ds) protocadherin signaling to induce vg expression in neighboring pre-wing cells. Here, we have subjected Dpp to the same experimental tests used to elucidate the Wg model and find that it behaves indistinguishably. Hence, we posit that both morphogens act together, via a common mechanism, to control wing growth as a function of morphogen range.


2020 ◽  
Author(s):  
André Nogueira Alves ◽  
Marisa Mateus Oliveira ◽  
Takashi Koyama ◽  
Alexander Shingleton ◽  
Christen Mirth

AbstractAnimals develop in unpredictable, changing environments. To do this, they adjust their development according to environmental conditions to generate plastic variation in traits, while also buffering against environmental change to produce robust phenotypes. However, how organ development is coordinated to accommodate both plastic and robust developmental responses is poorly understood. Here, we propose that the steroid hormone ecdysone coordinates both plasticity in organ size and robustness of organ pattern in the developing wings of the fruit fly Drosophila melanogaster. Ablating the prothoracic glands (PGX), which synthesise and secrete ecdysone, resulted in wing discs that were reduced in size and delayed in the progression of Achaete and Senseless pattern. These effects were rescued by adding ecdysone to the food. Further, while wing growth was driven by both ecdysone and nutrition, ecdysone alone induced the progression of wing patterning. To further explore this difference in response, we quantified wing growth and patterning in PGX larvae that were either fed on standard diet or starved of yeast across a range of ecdysone concentrations. Disc growth rates increased in a graded, linear manner with ecdysone concentration in starved larvae. In contrast, Achaete and Senseless patterning rates showed threshold responses regardless of diet. This means that ecdysone confers robustness by turning on patterning once it exceeds threshold concentrations, while inducing graded responses for disc growth, tuning growth to environmental conditions. This potentially represents a generalizable mechanism through which hormones coordinate plastic growth with robust patterning in the face of environmental change.Significance StatementTo survive changes in their environment, organisms adjust processes like growth to match the environment while ensuring that development processes necessary for correct body function remain insensitive to perturbation. For instance, organ size changes with environmental conditions like food availability and temperature. However, the specification of cell types within an organ, known as patterning, remains constant. How do animals coordinate variable and invariant developmental programs within the same organ? In this study, we define how a single hormone, the steroid hormone ecdysone, controls both variable growth and constant patterning in the developing wing. This is important, as it reveals a key pathway that allows insects to cope with environmental change and also highlights potential limits to surviving these changes.


2020 ◽  
Vol 117 (50) ◽  
pp. 31935-31944 ◽  
Author(s):  
Joseph Parker ◽  
Gary Struhl

The stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the Drosophila wing—a classic paradigm—is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Wing growth during larval life ceases when the primordium attains full size, concomitant with the larval-to-pupal molt orchestrated by the steroid hormone ecdysone. Here, we block the molt by genetically dampening ecdysone production, creating an experimental paradigm in which the wing stops growing at the correct size while the larva continues to feed and gain body mass. Under these conditions, we show that wing growth is limited by the ranges of Dpp and Wg, and by ecdysone, which regulates the cellular response to their signaling activities. Further, we present evidence that growth terminates because of the loss of two distinct modes of morphogen action: 1) maintenance of growth within the wing proper and 2) induced growth of surrounding “pre-wing” cells and their recruitment into the wing. Our results provide a precedent for the control of organ size by morphogen range and the hormonal gating of morphogen action.


2020 ◽  
Author(s):  
Shinya Matsuda ◽  
Jonas V. Schaefer ◽  
Yusuke Mii ◽  
Yutaro Hori ◽  
Dimitri Bieli ◽  
...  

SummaryMorphogen gradients provide positional information and control growth in developing tissues, but the underlying mechanisms remain largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two synthetic protein binder tools manipulating different parameters of Decapentaplegic (Dpp), a morphogen thought to control Drosophila wing disc patterning and growth by dispersal; while HA trap blocks Dpp dispersal, Dpp trap blocks Dpp dispersal and signaling in the source cells. Using these tools, we found that while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that dpp transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient dpp source cells render the anterior compartment robust to blocking Dpp dispersal. Furthermore, neither Dpp dispersal nor signaling is critical for lateral wing growth. These results challenge Dpp dispersal-centric mechanisms, and demonstrate the utility of customized protein binder tools to dissect protein functions.


Sign in / Sign up

Export Citation Format

Share Document