scholarly journals Epigenetic regulation of germ cell differentiation

2010 ◽  
Vol 22 (6) ◽  
pp. 737-743 ◽  
Author(s):  
Suk Ho Eun ◽  
Qiang Gan ◽  
Xin Chen
Biology Open ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 119-124 ◽  
Author(s):  
M. Mukai ◽  
S. Hira ◽  
K. Nakamura ◽  
S. Nakamura ◽  
H. Kimura ◽  
...  

Author(s):  
Fabio M. D’Orazio ◽  
Piotr J. Balwierz ◽  
Ada Jimenez González ◽  
Yixuan Guo ◽  
Benjamín Hernández-Rodríguez ◽  
...  

Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 339-348 ◽  
Author(s):  
Haiying Huai ◽  
R C Woodruff

Abstract Germ-cell mutations may occur during meiosis, giving rise to independent mutant gametes in a Poisson process, or before meiosis, giving rise to multiple copies of identical mutant gametes at a much higher probability than the Poisson expectation. We report that the occurrence of these early premeiotic clusters of new identical mutant alleles increases the variance-to-mean ratio of mutation rate (R(u) > 1). This leads to an expected variance-to-mean ratio (R(t)) of the molecular clock that is always greater than one and may cover the observed range of R(t) values. Hence, the molecular clock may not be overdispersed based on this new mutational model that includes clusters. To get a better estimation of R(u) and R(t), one needs measurements of the intrageneration variation of reproductive success (Ni/Ne(i)), population dynamics (k‒i), and the proportion of new mutations that occur in clusters (rc), especially those formed before germ-cell differentiation.


2008 ◽  
Vol 90 ◽  
pp. S461
Author(s):  
J.H. Lee ◽  
L. Dae Hoon ◽  
L. Mei ◽  
W.C. Xiong

Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 471-480 ◽  
Author(s):  
Gerardo M Oresti ◽  
Jesús García-López ◽  
Marta I Aveldaño ◽  
Jesús del Mazo

Male germ cell differentiation entails the synthesis and remodeling of membrane polar lipids and the formation of triacylglycerols (TAGs). This requires fatty acid-binding proteins (FABPs) for intracellular fatty acid traffic, a diacylglycerol acyltransferase (DGAT) to catalyze the final step of TAG biosynthesis, and a TAG storage mode. We examined the expression of genes encoding five members of the FABP family and two DGAT proteins, as well as the lipid droplet protein perilipin 2 (PLIN2), during mouse testis development and in specific cells from seminiferous epithelium.Fabp5expression was distinctive of Sertoli cells and consequently was higher in prepubertal than in adult testis. The expression ofFabp3increased in testis during postnatal development, associated with the functional differentiation of interstitial cells, but was low in germ cells.Fabp9, together withFabp12, was prominently expressed in the latter. Their transcripts increased from spermatocytes to spermatids and, interestingly, were highest in spermatid-derived residual bodies (RB). Both Sertoli and germ cells, which produce neutral lipids and store them in lipid droplets, expressedPlin2. Yet, whileDgat1was detected in Sertoli cells,Dgat2accumulated in germ cells with a similar pattern of expression asFabp9. These results correlated with polyunsaturated fatty acid-rich TAG levels also increasing with mouse germ cell differentiation highest in RB, connecting DGAT2 with the biosynthesis of such TAGs. The age- and germ cell type-associated increases inFabp9,Dgat2, andPlin2levels are thus functionally related in the last stages of germ cell differentiation.


2017 ◽  
Vol 119 (2) ◽  
pp. 1548-1557 ◽  
Author(s):  
Yingjie Wang ◽  
Yulin Bi ◽  
Qisheng Zuo ◽  
Wenhui Zhang ◽  
Dong Li ◽  
...  

Development ◽  
2021 ◽  
Author(s):  
Saya Kagiwada ◽  
Shinya Aramaki ◽  
Guangming Wu ◽  
Borami Shin ◽  
Eva Kutejova ◽  
...  

The germ cell lineage in mammals is induced by the stimulation of pluripotent epiblast cells with signaling molecules. Previous studies have suggested that the germ cell differentiation competence or responsiveness of epiblast cells to signaling molecules is established and maintained in epiblast cells of a specific differentiation state. However, the molecular mechanism underlying this process has not been well defined. Here, using the differentiation model of epiblast stem cells (EpiSCs), we have shown that two defined EpiSC lines have robust germ cell differentiation competence. However, another defined EpiSC line has no competence. By evaluating the molecular basis of EpiSCs with distinct germ cell differentiation competence, we identified YAP/YAP1/YAP65, an intracellular mediator of the Hippo signaling pathway, as a critical mediator for establishing germ cell induction. Strikingly, deletion of YAP severely affected responsiveness to inductive stimuli, leading to a defect in WNT target activation and germ cell differentiation. In conclusion, we propose that the Hippo/YAP signaling pathway creates a potential for germ cell fate induction via mesodermal WNT signaling in pluripotent epiblast cells.


Sign in / Sign up

Export Citation Format

Share Document