scholarly journals Cell-type-specific regulation of genes involved in testicular lipid metabolism: fatty acid-binding proteins, diacylglycerol acyltransferases, and perilipin 2

Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 471-480 ◽  
Author(s):  
Gerardo M Oresti ◽  
Jesús García-López ◽  
Marta I Aveldaño ◽  
Jesús del Mazo

Male germ cell differentiation entails the synthesis and remodeling of membrane polar lipids and the formation of triacylglycerols (TAGs). This requires fatty acid-binding proteins (FABPs) for intracellular fatty acid traffic, a diacylglycerol acyltransferase (DGAT) to catalyze the final step of TAG biosynthesis, and a TAG storage mode. We examined the expression of genes encoding five members of the FABP family and two DGAT proteins, as well as the lipid droplet protein perilipin 2 (PLIN2), during mouse testis development and in specific cells from seminiferous epithelium.Fabp5expression was distinctive of Sertoli cells and consequently was higher in prepubertal than in adult testis. The expression ofFabp3increased in testis during postnatal development, associated with the functional differentiation of interstitial cells, but was low in germ cells.Fabp9, together withFabp12, was prominently expressed in the latter. Their transcripts increased from spermatocytes to spermatids and, interestingly, were highest in spermatid-derived residual bodies (RB). Both Sertoli and germ cells, which produce neutral lipids and store them in lipid droplets, expressedPlin2. Yet, whileDgat1was detected in Sertoli cells,Dgat2accumulated in germ cells with a similar pattern of expression asFabp9. These results correlated with polyunsaturated fatty acid-rich TAG levels also increasing with mouse germ cell differentiation highest in RB, connecting DGAT2 with the biosynthesis of such TAGs. The age- and germ cell type-associated increases inFabp9,Dgat2, andPlin2levels are thus functionally related in the last stages of germ cell differentiation.

2007 ◽  
Vol 19 (1) ◽  
pp. 119
Author(s):  
L. Arregui ◽  
R. Rathi ◽  
W. Zeng ◽  
A. Honaramooz ◽  
M. Gomendio ◽  
...  

Testis tissue grafting presents an option for preservation of genetic material when sperm recovery is not possible. Grafting of testis tissue from sexually immature males to immunodeficient mice results in germ cell differentiation and production of fertilization-competent sperm from different mammalian species (Honaramooz et al. 2002 Nature 418, 778–781). However, the efficiency of testis tissue xenografting from adult donors has not been critically evaluated. Spermatogenesis was arrested at meiosis in grafts from mature horses (Rathi et al. 2006 Reproduction 131, 1091–1098) and hamsters (Schlatt et al. 2002 Reproduction 124, 339–346), and no germ cell differentiation occurred in xenografts of adult human testis tissue (Schlatt et al. 2006 Hum. Reprod. 21, 384–389). The objective of this study was to investigate survival and germ cell differentiation of testis xenografts from sexually mature donors of different species. Small fragments of testis tissue from 10 donor animals of 5 species were grafted under the back skin of immunodeficient, castrated male mice (n = 37, 2–6/donor). Donors were pig (8 months old), goat (18 months old and 4 years old) (n = 2), bull (3 years old), donkey (13 months old), and rhesus monkey (3, 6, 11, and 12 years old). At the time of grafting, donor tissue contained elongated spermatids, albeit to different degrees (>75% of seminiferous tubules in testis tissue from pig, goat, bull, and 6–12-year-old monkeys, and 33 or 66% of tubules in tissue from donkey or 3-year-old monkey, respectively). Grafts were recovered <12 weeks (n = 14 mice), 12–24 weeks (n = 16 mice), and >24 weeks (n = 7 mice) after grafting and classified histologically as completely degenerated (no tubules found), degenerated tubules (only hyalinized seminiferous tubules observed), or according to the most advanced type of germ cell present. Grafts from pig, goat, bull, and 6–12-year-old monkeys contained >60% degenerated tubules or were completely degenerated at all time points analyzed. In contrast, in grafts from the 3-year-old monkey, only 18% of tubules were degenerated, 14% contained Sertoli cells only, 64% contained meiotic, and 4% haploid germ cells at 24 weeks after grafting. Similarly, donkey testis grafts recovered 12–24 weeks after grafting contained <2% degenerated tubules, 46% of tubules had Sertoli cells only, 45% contained meiotic, and 7% haploid germ cells. These results show that survival and differentiation of germ cells in testis grafts from sexually mature mammalian donors is poor. However, better graft survival and maintenance of spermatogenesis occurred in donor tissue from donkey and 3-year-old monkey that were less mature at the time of grafting. Therefore, species and age-related differences appear to exist with regard to germ cell survival and differentiation in xenografts from adult donors. This work was supported by USDA/CSREES 03-35203-13486, NIH/NCRR 5-R01-RR17359-05, the Spanish Ministry of Education, and Science (BES-2004-4112).


2010 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
J. R. Rodriguez-Sosa ◽  
G. M. J. Costa ◽  
R. Rathi ◽  
L. R. França ◽  
I. Dobrinski

In rodents, thyroid hormones inhibit Sertoli cell proliferation, promote Sertoli cell differentiation, and accelerate lumen formation in the seminiferous tubules. Conversely, transient hypothyroidism prolongs Sertoli cell proliferation, leading to increased Sertoli cell number and testicular size. In order to evaluate whether 6-N-propyl-2-thiouracil (PTU)-induced hypothyroidism in the host mouse would affect seminiferous tubule development and germ cell differentiation, and subsequently increase spermatogenesis in bovine testis xenografts, fragments (∼1 mm3) of testes from 1-wk-old Holstein calves (n = 6) were transplanted ectopically to castrated immunodeficient male mice (n = 6/donor). Mice (n = 3/donor) were treated with 0.1% (w/v) PTU in drinking water for 4 weeks or left as control. At 5 and 7 months after grafting, grafts were analyzed by morphometry and immunohistochemistry for expression of protein gene product 9.5 (PGP 9.5) as a germ cell marker, and Mullerian-inhibiting substance (MIS) and androgen receptor (AR) to assess Sertoli cell maturation. For each variable, averages of each group were compared at each collection point by t-test PTU treatment to the drinking water for 1 month suppressed thyroid hormone levels (T4) in host mice without negative systemic effects (0.3 ± 0.2 v. 4 ± 0.3 μg dL-1 at 4 weeks in treated v. control mice, respectively, P < 0.05). Spermatogenesis in recovered grafts was arrested at meiosis regardless of treatment and collection time. Graft weight was lower in treated mice than in controls (21 ± 4 v. 42 ± 5 and 24 ± 9 v. 51 ± 5 mg, at 5 and 7 months, respectively, P < 0.05). Volume density of the tubular and intertubular compartments, and seminiferous epithelium, was not affected by treatment (P > 0.05); however, treatment reduced lumen density compared to controls (9 ± 2 v. 19 ± 3 and 12 ± 1 v. 24 ± 4%) and tubular diameter (121 ± 3 v. 140 ± 7 and 144 ± 2v. 170 ± 2 (im, at 5 and 7 months, respectively (P < 0.05). Tubule length per milligram was not different at 5 months between control and treated groups (P > 0.05) but was increased at 7 months in the treated grafts (50 ± 1 v. 30 ± 1 cm, P < 0.05). Number of Sertoli cells per milligram was not affected by treatment (P > 0.05). However, Sertoli cell volume was increased in controls (440 ± 19 v. 341 ± 14 and 504 ± 6 v. 388 ± 18 μm3, at 5 and 7 months, respectively, P < 0.05). The number of germ cells per 100 Sertoli cells was not different between groups at any collection time (P > 0.05). Sertoli cells showed variable MIS expression and lack of or weak AR expression regardless of treatment and collection time, indicating an immature phenotype. In conclusion, suppression of thyroid hormone levels in host mice affects seminiferous tubule development in bovine testis xenografts, demonstrating that endocrine manipulation of the mouse host will affect xenografts in a predictable manner. However, treatment did not affect number and differentiation of germ cells. Rather, incomplete Sertoli cell maturation appears to lead to incomplete germ cell differentiation in bovine testis xenografts. Supported by USDA (2007-35203-18213).


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Min Chen ◽  
Min Chen ◽  
Suren Chen ◽  
Jingjing Zhou ◽  
Fangfang Dong ◽  
...  

The interaction between germ cell and somatic cell plays important roles in germ cell development. However, the exact function of gonad somatic cell in germ cell differentiation is unclear. In the present study, the function of gonad somatic cell in germ cell meiosis was examined by using mouse models with aberrant somatic cell differentiation. In Wt1R394W/R394W mice, the genital ridge is absent due to the apoptosis of coelomic epithelial cells. Interestingly, in both male and female Wt1R394W/R394W germ cells, STRA8 was detected at E12.5 and the scattered SYCP3 foci were observed at E13.5 which was consistent with control females. In Wt1-/flox; Cre-ERTM mice, Wt1 was inactivated by the injection of tamoxifen at E9.5 and the differentiation of Sertoli and granulosa cells was completely blocked. We found that most germ cells were located outside of genital ridge after Wt1 inactivation. STRA8, SYCP3, and γH2AX proteins were detected in germ cells of both male and female Wt1-/flox; Cre-ERTM gonads, whereas no thread-like SYCP3 signal was observed. Our study demonstrates that aberrant development of gonad somatic cells leads to ectopic expression of meiosis-associated genes in germ cells, but meiosis was arrested before prophase I. These results suggest that the proper differentiation of gonad somatic cells is essential for germ cell meiosis.


2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 670-670
Author(s):  
Indrashis Bhattacharya ◽  
Kanchan Sarda ◽  
Mukkesh Gautam ◽  
Subeer S. Majumdar

Author(s):  
M. Dym

The Sertoli cells perform an impressive array of functions in the testis. It is possible that the full control of germ cell differentiation is mediated by this elaborate cell type (Fig. 1). On the basis of its shape and strategic position within the seminiferous epithelium the functions of (1) support and nutrition have been assigned. Fawcett and Phillips (J. Reprod. Fert. 6: 405, 1969) demonstrated that the Sertoli cells engineer the (2) release of late spermatids into the tubule lumen; other data suggest that they are instrumental in the migration of the germ cells from the basal lamina to the lumen. Tight junctions between adjacent Sertoli cells subdivide the seminiferous epithelium into two compartments, basal and adluminal. These junctions form the (3) morphological basis of the blood-testis barrier . The Sertoli cells are capable of (4) phagocytizing vast numbers of degenerating germ cells and sperm residual bodies.


Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 83-93
Author(s):  
J. H. Cleine

The genital ridges of Xenopus laevis tadpoles reared from eggs kept in an inverted position contain less than 40 % of the number of primordial germ cells (PGCs) of controls (Cleine & Dixon, 1985). It has been suggested that this reduction is caused by the germ cells' ectopic position in the anterior endoderm of larvae from inverted eggs, from where they may be unable to migrate into the genital ridges (Cleine & Dixon, 1985). This hypothesis is tested here by interchanging anterior and posterior endodermal grafts between pairs of inverted embryos at the early tailbud stage. Replacement of anterior by posterior endoderm has no effect but replacement of posterior by anterior endoderm increases the number of PGCs in the genital ridges and significantly reduces the proportion of sterile embryos. In a control series, in which the same type of grafting was done with normal embryos, replacement of posterior by anterior endoderm reduced the number of germ cells to almost zero, but replacement of anterior by posterior endoderm nearly doubled it. These findings are explained in terms of the distribution of the germ cells in the endoderm at the time of grafting. The results firstly show that the position of the germ cells is crucial to successful migration and secondly they support the notion that germ plasm has a determinative role during early germ cell differentiation.


1985 ◽  
Vol 101 (4) ◽  
pp. 1511-1522 ◽  
Author(s):  
M A Hadley ◽  
S W Byers ◽  
C A Suárez-Quian ◽  
H K Kleinman ◽  
M Dym

Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.


Reproduction ◽  
2016 ◽  
Vol 151 (6) ◽  
pp. 673-681 ◽  
Author(s):  
Ma Tian-Zhong ◽  
Chen Bi ◽  
Zhang Ying ◽  
Jing Xia ◽  
Peng Cai-Ling ◽  
...  

Abstract Emx2 deletion impairs the growth and maintenance of the genital ridge. However, its role in subsequent germ cell differentiation during embryonic stages is unknown. Using a tamoxifen-inducible Cre-loxP mouse model (Emx2flox/flox, Cre-ERTM, hereafter called as Emx2 knockdown), we showed that germ cell differentiation was impaired in Emx2-knockdown testes. Representative characteristics of male germ cell differentiation, including a reduced ability to form embryonic germ (EG) cell colonies in vitro, down-regulation of pluripotency markers and G1/G0 arrest, did not occur in Emx2-knockdown testes. Furthermore, FGF9 and NODAL signalling occurred at abnormally high levels in Emx2-knockdown testes. Both blocking FGF9 signalling with SU5402 and inhibiting NODAL signalling with SB431542 allowed germ cells from Emx2-knockdown testes to differentiate in vitro. Therefore, EMX2 in somatic cells is required to trigger germ cell differentiation in XY foetuses, posterior to its previously reported role in the growth and maintenance of the genital ridge.


Sign in / Sign up

Export Citation Format

Share Document