scholarly journals Signal integration in forward and reverse neutrophil migration: Fundamentals and emerging mechanisms

2021 ◽  
Vol 72 ◽  
pp. 124-130
Author(s):  
Briana Rocha-Gregg ◽  
Anna Huttenlocher
Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


1984 ◽  
Vol 52 (02) ◽  
pp. 134-137 ◽  
Author(s):  
Yaacov Matzner ◽  
Gerard Marx ◽  
Ruth Drexler ◽  
Amiram Eldor

SummaryClinical observations have shown that heparin has antiinflammatory activities. The effect of heparin on neutrophil chemotaxis was evaluated in vitro in the Boyden Chamber. This method enabled differentiation between the direct effects of heparin on neutrophil migration and locomotion, and its effects on chemotactic factors. Heparin inhibited both the random migration and directed locomotion of human neutrophils toward zymosan-activated serum (ZAS) and F-met-leu-phe (FMLP). Inhibition was found to be dependent on the concentrations of the heparin and of the chemotactic factors. No specific binding of heparin to the neutrophils could be demonstrated, and heparin’s inhibitory effects were eliminated by simple washing of the cells. When added directly to the chamber containing chemotactic factor, heparin inhibited the chemotactic activity of ZAS but not that of FMLP, suggesting a direct inhibitory effect against C5a, the principal chemotactic factor in ZAS.Experiments performed with low-molecular-weight heparin, N-desulfated heparin, dextran sulfate, chondroitin sulfate and dextran indicated that the inhibitory effects of heparin on neutrophil chemotaxis are not related to its anticoagulant activity, but probably depend on the degree of sulfation of the heparin molecule.


Author(s):  
A.C.T. Quah ◽  
J.C.H. Phang ◽  
L.S. Koh ◽  
S.H. Tan ◽  
C.M. Chua

Abstract This paper describes a pulsed laser induced digital signal integration algorithm for pulsed laser operation that is compatible with existing ac-coupled and dc-coupled detection systems for fault localization. This algorithm enhances laser induced detection sensitivity without a lock-in amplifier. The best detection sensitivity is achieved at a pulsing frequency range between 500 Hz to 1.5 kHz. Within this frequency range, the algorithm is capable of achieving more than 9 times enhancement in detection sensitivity.


Sign in / Sign up

Export Citation Format

Share Document