Faculty Opinions recommendation of Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils.

Author(s):  
Dietmar Vestweber
2005 ◽  
Vol 16 (6) ◽  
pp. 2694-2703 ◽  
Author(s):  
Ke Zen ◽  
Yuan Liu ◽  
Ingrid C. McCall ◽  
Tao Wu ◽  
Winston Lee ◽  
...  

Neutrophil (polymorphonuclear leukocytes [PMN]) transepithelial migration during inflammatory episodes involves a complex series of adhesive interactions and signaling events. Previous studies have shown that key adhesive interactions between leukocyte CD11b/CD18 and basally expressed fucosylated glycoproteins followed by binding to desmosomal-associated JAM-C are key elements of the transmigration response. Here we provide the first evidence that PMN-expressed junctional adhesion molecule-like protein (JAML) regulates transmigration via binding interactions with epithelial coxsackie and adenovirus receptor (CAR). Experiments with a JAML fusion protein revealed specific binding of JAML to epithelial CAR expressed at tight junctions in T84 cell monolayers and normal human colonic mucosa. Furthermore, JAML-CAR binding is mediated via the membrane distal immunoglobulin (Ig) loop of CAR and the membrane proximal Ig loop of JAML. PMN bound to immobilized CAR but not JAML in a divalent cation-independent manner. Lastly, in assays of PMN transepithelial migration, JAML/CAR fusion proteins and their antibodies significantly inhibited transmigration in a specific manner. Taken together, these results indicate that JAML and CAR are a novel pair of adhesion molecules that play an important role in modulating PMN migration cross epithelial tight junctions. These findings add a new element to a multistep model of PMN transepithelial migration and may provide new targets for anti-inflammatory therapies.


Endocrinology ◽  
2007 ◽  
Vol 148 (11) ◽  
pp. 5459-5469 ◽  
Author(s):  
Momina Mirza ◽  
Cecilia Petersen ◽  
Katarina Nordqvist ◽  
Kerstin Sollerbrant

The coxsackievirus and adenovirus receptor (CAR) is a cell adhesion molecule expressed in epithelial tight junctions and other cell-cell contacts. Using indirect immunofluorescence, quantitative RT-PCR, and Western blots, the expression and distribution of CAR in developing and adult testis are examined. CAR is highly expressed in both Sertoli and germ cells during perinatal and postnatal development, followed by a rapid down-regulation of both mRNA and protein levels. Interestingly, we find that CAR is a previously unknown downstream target for FSH because CAR mRNA levels were induced in primary cultures of FSH-stimulated Sertoli cells. In contrast to other epithelia, CAR is not a general component of tight junctions in the seminiferous epithelium, and Sertoli cells in the adult testis do not express CAR. Instead, CAR expression is stage dependent and specifically found in migratory germ cells. RT-PCR also demonstrated the presence of junctional adhesion molecule-like (JAML) in the testis. JAML was previously reported by others to form a functional complex with CAR regulating transepithelial migration of leukocytes. The expression of JAML in the testis suggests that a similar functional complex might be present during germ cell migration across the blood-testis barrier. Finally, an intermediate compartment occupied by CAR-positive, migrating germ cells and flanked by two occludin-containing junctions is identified. Together, these results implicate a function for CAR in testis morphogenesis and in migration of germ cells across the blood-testis barrier during spermatogenesis.


2009 ◽  
Vol 28 (3) ◽  
pp. 268-274 ◽  
Author(s):  
Katrin Küster ◽  
Carsten Grötzinger ◽  
Annika Koschel ◽  
Andreas Fischer ◽  
Bertram Wiedenmann ◽  
...  

Author(s):  
Yohsuke Imai ◽  
Hitoshi Kondo ◽  
Young Ho Kang ◽  
Takuji Ishikawa ◽  
Chwee Teck Lim ◽  
...  

Infection by malaria parasite changes mechanical properties of red blood cells (RBCs). Infected red blood cells (IRBCs) lose the deformability but also develop the ability to cytoadhere and rosetting. These outcomes can lead to microvascular blockage [1]. The stiffness of IRBCs [2] and its effects on the flow in micro channels [3] were studied with recent experimental techniques. The cytoadherence and rosetting properties of IRBCs have also been studied experimentally. The cytoadherence is mediated by the interaction of the parasite protein PfEMP1 with several endothelial adhesion molecules, such as CD36, intercellular adhesion molecule-1 (ICAM-1), P-selectin, and vascular cell adhesion molecule-1 (VCAM-1) [4]. In particular, the ligand-receptor interaction between PfEMP1 and CD36 shows tight adhesion [5]. Microvascular blockage may be a hemodynamic problem, involving the interactions between IRBCs, healthy RBCs (HRBCs) and endothelial cells (ECs) in flowing blood, but however experimental techniques have several limitations to this topic. First, it is still difficult to observe the RBC behavior interacting with many other cells even with the recent confocal microscopy. Second, the three-dimensional information on flow field is hardly obtained. Third, capillaries in human body are circular channels with complex geometry, but such complex channels cannot be created in micro scale. Instead, numerical modeling can overcome these problems. We presented a two-dimensional hemodynamic model involving adhesive interactions [6]. In this paper, we propose a three-dimensional model of the adhesive interactions for micro scale hemodynamics in malaria infection.


Blood ◽  
2006 ◽  
Vol 108 (6) ◽  
pp. 2064-2071 ◽  
Author(s):  
Gloria Lee ◽  
Annie Lo ◽  
Sarah A. Short ◽  
Tosti J. Mankelow ◽  
Frances Spring ◽  
...  

AbstractErythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule 4 (ICAM-4), an immunoglobulin superfamily member, participates in island formation. Earlier, we identified αV integrins as ICAM-4 counterreceptors. Because macrophages express αV, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knock-out mice and developed quantitative, live cell techniques for harvesting intact islands and for re-forming islands in vitro. We observed a 47% decrease in islands reconstituted from ICAM-4 null marrow compared to wild-type marrow. We also found a striking decrease in islands formed in vivo in knock-out mice. Further, peptides that block ICAM-4/αV adhesion produced a 53% to 57% decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage αV functions in island integrity. Importantly, we documented that αV integrin is expressed in macrophages isolated from erythroblastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/αV adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.


2001 ◽  
Vol 12 (6) ◽  
pp. 1595-1609 ◽  
Author(s):  
Shigekazu Yokoyama ◽  
Kouichi Tachibana ◽  
Hiroyuki Nakanishi ◽  
Yasunori Yamamoto ◽  
Kenji Irie ◽  
...  

ZO-1 is an actin filament (F-actin)–binding protein that localizes to tight junctions and connects claudin to the actin cytoskeleton in epithelial cells. In nonepithelial cells that have no tight junctions, ZO-1 localizes to adherens junctions (AJs) and may connect cadherin to the actin cytoskeleton indirectly through β- and α-catenins as one of many F-actin–binding proteins. Nectin is an immunoglobulin-like adhesion molecule that localizes to AJs and is associated with the actin cytoskeleton through afadin, an F-actin–binding protein. Ponsin is an afadin- and vinculin-binding protein that also localizes to AJs. The nectin-afadin complex has a potency to recruit the E-cadherin–β-catenin complex through α-catenin in a manner independent of ponsin. By the use of cadherin-deficient L cell lines stably expressing various components of the cadherin-catenin and nectin-afadin systems, and α-catenin–deficient F9 cell lines, we examined here whether nectin recruits ZO-1 to nectin-based cell-cell adhesion sites. Nectin showed a potency to recruit not only α-catenin but also ZO-1 to nectin-based cell-cell adhesion sites. This recruitment of ZO-1 was dependent on afadin but independent of α-catenin and ponsin. These results indicate that ZO-1 localizes to cadherin-based AJs through interactions not only with α-catenin but also with the nectin-afadin system.


2004 ◽  
Vol 15 (8) ◽  
pp. 3926-3937 ◽  
Author(s):  
Ke Zen ◽  
Brian A. Babbin ◽  
Yuan Liu ◽  
John B. Whelan ◽  
Asma Nusrat ◽  
...  

Neutrophil (PMN) transepithelial migration is dependent on the leukocyte β2integrin CD11b/CD18, yet the identity of epithelial counterreceptors remain elusive. Recently, a JAM protein family member termed JAM-C was implicated in leukocyte adhesive interactions; however, its expression in epithelia and role in PMN-epithelial interactions are unknown. Here, we demonstrate that JAM-C is abundantly expressed basolaterally in intestinal epithelia and localizes to desmosomes but not tight junctions. Desmosomal localization of JAM-C was further confirmed by experiments aimed at selective disruption of tight junctions and desmosomes. In assays of PMN transepithelial migration, both JAM-C mAbs and JAM-C/Fc chimeras significantly inhibited the rate of PMN transmigration. Additional experiments revealed specific binding of JAM-C to CD11b/CD18 and provided evidence of other epithelial ligands for CD11b/CD18. These findings represent the first demonstration of direct adhesive interactions between PMN and epithelial intercellular junctions (desmosomes) that regulate PMN transepithelial migration and also suggest that JAM-C may play a role in desmosomal structure/function.


Sign in / Sign up

Export Citation Format

Share Document