Slippery liquid-infused porous surface for corrosion protection with self-healing property

2018 ◽  
Vol 345 ◽  
pp. 147-155 ◽  
Author(s):  
Tengfei Xiang ◽  
Min Zhang ◽  
Hisham Rabia Sadig ◽  
Zecai Li ◽  
Manxin Zhang ◽  
...  
2018 ◽  
Vol 348 ◽  
pp. 1064-1065 ◽  
Author(s):  
Tengfei Xiang ◽  
Min Zhang ◽  
Hisham Rabia Sadig ◽  
Zecai Li ◽  
Manxin Zhang ◽  
...  

2012 ◽  
Vol 05 ◽  
pp. 234-241 ◽  
Author(s):  
NAHID PIRHADY TAVANDASHTI ◽  
SOHRAB SANJABI

Nanostructured hybrid silica/epoxy films containing boehmite nanoparticles were investigated in the present work as pretreatments for AA2024 alloy. To produce the nanocomposite sol-gel films, boehmite nanoparticles prepared from hydrolysis/condensation of aluminum isopropoxide ( AlI ) were doped into another hybrid organosiloxane sol. The produced oxide nanoparticles have the capability to act as nanoreservoirs of corrosion inhibitors, releasing them controllably to protect the metallic substrate from corrosion. For this purpose the corrosion inhibitor, cerium nitrate, was introduced into the sol-gel system via loading the nanoparticles. The morphology and the structure of the hybrid sol-gel films were studied by Scanning Electron Microscopy (SEM). The corrosion protection properties of the films were investigated by Potentiodynamic Scanning (PDS) and Electrochemical Impedance Spectroscopy (EIS). The results show that the presence of boehmite nanoparticles highly improved the corrosion protection performance of the silica/epoxy coatings. Moreover, they can act as nanoreservoirs of corrosion inhibitors and provide prolonged release of cerium ions, offering a self-healing property to the film.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


Author(s):  
Narubeth Lorwanishpaisarn ◽  
Natwat Srikhao ◽  
Kaewta Jetsrisuparb ◽  
Jesper T. N. Knijnenburg ◽  
Somnuk Theerakulpisut ◽  
...  

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Chenghao Dai ◽  
Xijuan Cao ◽  
Kai Gou ◽  
Qiyan Yin ◽  
Binjie Du ◽  
...  

Author(s):  
Chao Zhou ◽  
Juntao Zhou ◽  
Xiaoqing Ma ◽  
Dicky Pranantyo ◽  
Jingjing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document