asphalt mastic
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 71)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 318 ◽  
pp. 126048
Author(s):  
Keke Lou ◽  
Peng Xiao ◽  
Qin Tang ◽  
Yuhao Wu ◽  
Zhengguang Wu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 318 ◽  
pp. 125718
Author(s):  
Bangwei Wu ◽  
Zhaohui Pei ◽  
Chufan Luo ◽  
Ji Xia ◽  
Chuangchuang Chen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7891
Author(s):  
Fazli Karim ◽  
Jawad Hussain

Adequate asphalt binder film thickness (ABFT) delivers skeletal integrity in recycled asphalt mixtures, resulting in long-lasting roadways when exposed to traffic and environment. The inaccurate measurement of ABFT and the consequences of not having adequate film thickness model has substantially introduced discrepancies in predicting actual performance of recycled asphalt mixtures. Expansion of the ultra-modern expertise and SuperPave requirements necessitate the revision of authentic ABFT at micro-level. The current study identifies the weaknesses of the current methods of estimating ABFT and provides results that are reliable and useful, using modern measurement methods. Using scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDS), this study measures the ABFT around the tiniest particle of 0.2 μm magnitude, entrenched in asphalt mastic in recycled asphalt mixtures. The ABFT, obtained through image analysis, is compared with those obtained through available analytical models. The study utilizes different asphalt mixtures, containing varying proportions of recycled asphalt mixture and rejuvenators. The aggregate, virgin, and recycled binders were characterized in terms of physical and rheological properties, respectively. Marshall mix design was carried out for the conventional and recycled mixture, containing 40%, 50%, and 60% recycled materials, rejuvenated with 3%, 6%, 9%, and 12% waste engine oil (WEO) at a mixing temperature of 160 °C, based on viscosity of the virgin and rejuvenated binder. ABFT was assessed through analytical models and image analysis for the aforesaid recycled asphalt mixtures, prepared at optimum binder and rejuvenator content as per protocol outlined in ASTM D1559. The analytical estimation of ABFT, in the aforesaid recycled asphalt mixtures, revealed that the ABFT fluctuates from 6.4 μm to 13.7 microns, with a significant association to recycled asphalt mixture and rejuvenator content. However, the image analysis revealed that the ABFT, in the aforesaid recycled asphalt mixtures, fluctuates from 0.4 μm to 2 microns, without any association to recycled asphalt mixture or rejuvenator content. The image analysis indicated that the recycled asphalt mixtures typically comprise of mortar, happening in uneven shape, and are used to grip large aggregates. The asphalt mastic, a blend of bitumen and mineral filler, was found to be an interlocking agent, used to grasp only fine particles in asphalt mortar. The asphalt binder film was discovered to be a deviating stand-alone entity that only exists around the mineral fillers in the asphalt mastic as a non-absorbed binder, occupying an imprecise space of 0.4 μm to 2 microns, among the filler particles. The current findings will be useful to design asphalt pavements through the aforesaid precise limit of SEM-based ABFT rather than traditionally measured ABFT to predict the actual performance of recycled asphalt mixtures.


2021 ◽  
pp. 315-322
Author(s):  
Michael Steineder ◽  
Bernhard Hofko ◽  
Lukas Eberhardsteiner

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6163
Author(s):  
Gang Xu ◽  
Yixin Zhou ◽  
Yu Zhu ◽  
Rui Wang ◽  
Xianhua Chen

The long-term effect of climate factors, such as sunlight, oxygen, and water, leads to the performance degradation of the asphalt mastic, which is the binding part in the asphalt mixture. It is not conducive to satisfy the long-term performance requirements of long-life asphalt pavement. In this study, five kinds of base asphalt mastic and styrene-butadiene-styrene (SBS) modified asphalt mastic were prepared with the filler-asphalt ratio of 0.6, 0.8, 1.0, 1.2, and 1.4. The indoor simulated weather aging tests were carried out considering multi-factors including sunlight, oxygen, and water. The master curves of the complex shear modulus and phase angle of the asphalt mastic with different aging degrees were obtained by the frequency sweep test. The curves of fatigue damage characteristics and fatigue life were fitted based on the viscoelastic continuum damage (VECD) model. The influence of weather aging on the viscoelasticity and fatigue performance of asphalt mastic were analyzed. Results indicated that the effect of weather aging increases the elastic component and decreases the viscous component. The fatigue performance of SBS modified asphalt mastic was better than that of base asphalt mastic. As the aging degree deepens, the brittle failure characteristics of asphalt mastic with a higher filler–asphalt ratio were more obvious. The base asphalt mastic becomes more sensitive to the strain level due to weather aging, and its fatigue life increased under the low strain loading and decreased under the high strain loading. The fatigue performance of SBS modified asphalt mastic was less sensitive to the strain level. The fatigue life reduced after aging under low and high strain load. Taking the impact of weather aging on the fatigue performance into consideration, the optimal filler–asphalt ratios of the base asphalt mastic SBS modified asphalt mastic are 1.0 and 1.2, respectively.


Sign in / Sign up

Export Citation Format

Share Document