Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor

2019 ◽  
Vol 356 ◽  
pp. 756-770 ◽  
Author(s):  
Srirat Chuayboon ◽  
Stéphane Abanades ◽  
Sylvain Rodat
Author(s):  
Haoran Ding ◽  
Yongqing Xu ◽  
Linyi Xiang ◽  
Qiyao Wang ◽  
Cheng Shen ◽  
...  

In order to reduce the hotspots in partial oxidation of methane, CeO2 supported BaCoO3 perogvskite-type oxides were synthesized using a sol-gel method and applied in chemical-looping steam methane reforming (CL-SMR). The synthesized BaCoO3-CeO2 was characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD and XPS results suggested that the obtained BaCoO3 was pure crystalline perovskite, its crystalline structure and lattice oxygen could regenerate after calcining. The reactivity of perovskite-type oxides in CL-SMR was evaluated using a fixed-bed reactor. Gas production rates and H2/CO ratios showed that the optimal reaction temperature was about 860 °C and the properly reaction time in fuel reactor was about 180s when Weight Hourly Space Velocity (WHSV) was 23.57 h−1. The syngas production in fuel reactor were 265.11 ml/g, hydrogen production in reforming reactor were 82.53 ml/g. (CSPE)


2017 ◽  
Vol 10 (6) ◽  
pp. 1345-1349 ◽  
Author(s):  
Mandar Kathe ◽  
Abbey Empfield ◽  
Peter Sandvik ◽  
Charles Fryer ◽  
Yitao Zhang ◽  
...  

This work describes the capability of a novel chemical looping system that utilizes CO2 as a feedstock for methane reforming.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1356
Author(s):  
Srirat Chuayboon ◽  
Stéphane Abanades

Converting sunlight into chemical fuels and metal commodities, via solar thermochemical conversion processes, is an attractive prospect for the long-term storage of renewable energy. In this study, the combined methane reforming and ZnO reduction in a single reaction for co-production of hydrogen-rich syngas and metallic Zn was demonstrated in a flexible solar thermochemical reactor prototype, driven by highly concentrated sunlight. Using solar energy as the process heat source in chemical-looping methane reforming with the ZnO/Zn oxygen carrier is a means to reduce the dependence on conventional energy resources and to reduce emissions of CO2 and other pollutants, while upgrading the calorific value of the feedstock for the production of energy-intensive and high-value chemical fuels and materials. On-sun experiments were carried out with different operating parameters including operating temperatures (800–1000 °C), inlet methane flow-rates (0.1–0.4 NL/min), and inlet ZnO feeding-rates (0.5–1.0 g/min) both in batch and continuous modes under reduced (0.15 and 0.45 bar) and atmospheric pressures (0.90 bar), thereby demonstrating solar reactor flexibility and reliability. As a result, increasing the temperature promoted net ZnO conversion at the expense of favored methane cracking reaction, which can be lowered by decreasing pressure to vacuum conditions. Diminishing total pressure improved the net ZnO conversion but favored CO2 yield due to insufficient gas residence time. Rising ZnO feeding rate under a constant over-stoichiometric CH4/ZnO molar ratio of 1.5 enhanced ZnO and methane consumption rates, which promoted Zn and syngas yields. However, an excessively high ZnO feeding rate may be detrimental, as ZnO could accumulate when the ZnO feeding rate is higher than the ZnO consumption rate. In comparison, continuous operation demonstrated greater performance regarding higher ZnO conversion (XZnO) and lower methane cracking than batch operation. High-purity metallic Zn with a well-crystallized structure and of micrometric size was produced from both batch and continuous tests under vacuum and atmospheric pressures, demonstrating suitable reactor performance for the solar thermochemical methane-driven ZnO reduction process. The produced Zn metal can be further re-oxidized with H2O or CO2 in an exothermic reaction to produce pure H2 or CO by chemical-looping.


2020 ◽  
Vol 8 (6) ◽  
pp. 2000053 ◽  
Author(s):  
Kent J. Warren ◽  
Richard J. Carrillo ◽  
Benjamin Greek ◽  
Caroline M. Hill ◽  
Jonathan R. Scheffe

Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121269
Author(s):  
Kun Zhao ◽  
Xiaojie Fang ◽  
Zhen Huang ◽  
Guoqiang Wei ◽  
Anqing Zheng ◽  
...  

Author(s):  
Nicolas Piatkowski ◽  
Christian Wieckert ◽  
Aldo Steinfeld

Gasification of coal, biomass, and other carbonaceous materials for high-quality syngas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a SiC-coated graphite plate, with the upper one serving as the radiative absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5-kW prototype reactor with an 8 cm-depth, 14.3 cm-diameter cylindrical bed was fabricated and tested in the High-Flux Solar Simulator at PSI, subjected to solar flux concentrations up to 2300 suns. Beech charcoal was used as a model feedstock and converted into high-quality syngas (predominantly H2 and CO) with packed-bed temperatures up to 1500 K, an upgrade factor of the calorific value of 1.33, and an energy conversion efficiency of 29%. Pyrolysis was evident through the evolution of higher gaseous hydrocarbons during heating of the packed bed. The engineering design, fabrication, and testing of the solar reactor are described.


Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122100
Author(s):  
Ming Luo ◽  
Haiyan Zhang ◽  
Shuxiang Wang ◽  
Jianjun Cai ◽  
Yanjun Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document