Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOX

2019 ◽  
Vol 364 ◽  
pp. 401-409 ◽  
Author(s):  
Wei Zhao ◽  
Shengping Dou ◽  
Kai Zhang ◽  
Licheng Wu ◽  
Qian Wang ◽  
...  
Fuel ◽  
2017 ◽  
Vol 210 ◽  
pp. 783-789 ◽  
Author(s):  
Jin Shi ◽  
Zihao Zhang ◽  
Mingxia Chen ◽  
Zhixiang Zhang ◽  
Wenfeng Shangguan

ACS Catalysis ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 5973-5983 ◽  
Author(s):  
Dongmei Meng ◽  
Wangcheng Zhan ◽  
Yun Guo ◽  
Yanglong Guo ◽  
Li Wang ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 321 ◽  
Author(s):  
Tuan Doan ◽  
Phong Dam ◽  
Khang Nguyen ◽  
Thanh Huyen Vuong ◽  
Minh Thang Le ◽  
...  

SAPO-34 was prepared with a mixture of three templates containing triethylamine, tetraethylammonium hydroxide, and morpholine, which leads to unique properties for support and production cost reduction. Meanwhile, Cu/SAPO-34, Fe/SAPO-34, and Cu-Fe/SAPO-34 were prepared through the ion-exchanged method in aqueous solution and used for selective catalytic reduction (SCR) of NOx with NH3. The physical structure and original crystal of SAPO-34 are maintained in the catalysts. Cu-Fe/SAPO-34 catalysts exhibit high NOx conversion in a broad temperature window, even in the presence of H2O. The physicochemical properties of synthesized samples were further characterized by various methods, including XRD, FE-SEM, EDS, N2 adsorption-desorption isotherms, UV-Vis-DRS spectroscopy, NH3-TPD, H2-TPR, and EPR. The best catalyst, 3Cu-1Fe/SAPO-34 exhibited high NOx conversion (> 90%) in a wide temperature window of 250–600 °C, even in the presence of H2O. In comparison with mono-metallic samples, the 3Cu-1Fe/SAPO-34 catalyst had more isolated Cu2+ ions and additional oligomeric Fe3+ active sites, which mainly contributed to the higher capacity of NH3 and NOx adsorption by the enhancement of the number of acid sites as well as its greater reducibility. Therefore, this synergistic effect between iron and copper in the 3Cu-1Fe/SAPO-34 catalyst prompted higher catalytic performance in more extensive temperature as well as hydrothermal stability after iron incorporation.


2019 ◽  
Vol 9 (3) ◽  
pp. 718-730 ◽  
Author(s):  
Jian-Wen Shi ◽  
Yao Wang ◽  
Ruibin Duan ◽  
Chen Gao ◽  
Baorui Wang ◽  
...  

Non-manganese-based metal oxides are promising catalysts for the NH3-SCR (selective catalytic reduction) of NOx at low temperatures.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Katarzyna Świrk ◽  
Ye Wang ◽  
Changwei Hu ◽  
Li Li ◽  
Patrick Da Costa ◽  
...  

Copper and iron promoted ZrO2 catalysts were prepared by one-pot synthesis using urea. The studied catalysts were characterized by XRD, N2 physisorption, XPS, temperature-programmed desorption of NH3 (NH3-TPD), and tested by the selective catalytic reduction by ammonia (NH3-SCR) of NO in the absence and presence of water vapor, under the experimental conditions representative of exhaust gases from stationary sources. The influence of SO2 on catalytic performance was also investigated. Among the studied catalysts, the Fe-Zr sample showed the most promising results in NH3-SCR, being active and highly selective to N2. The addition of SO2 markedly improved NO and NH3 conversions during NH3-SCR in the presence of H2O. The improvement in acidic surface properties is believed to be the cause.


2021 ◽  
pp. 116588
Author(s):  
Xianlong Zhang ◽  
Xincheng Zhang ◽  
Xiangjin Yang ◽  
Yazhong Chen ◽  
Xiaorui Hu ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1966
Author(s):  
Shiyong Yu ◽  
Jichao Zhang

A systematic modeling approach was scrutinized to develop a kinetic model and a novel monolith channel geometry was designed for NH3 selective catalytic reduction (NH3-SCR) over Cu-ZSM-5. The redox characteristic of Cu-based catalysts and the variations of NH3, NOx concentration, and NOx conversion along the axis in porous media channels were studied. The relative pressure drop in different channels, the variations of NH3 and NOx conversion efficiency were analyzed. The model mainly considers NH3 adsorption and desorption, NH3 oxidation, NO oxidation, and NOx reduction. The results showed that the model could accurately predict the NH3-SCR reaction. In addition, it was found that the Cu-based zeolite catalyst had poor low-temperature catalytic performance and good high-temperature activity. Moreover, the catalytic reaction of NH3-SCR was mainly concentrated in the upper part of the reactor. In addition, the hexagonal channel could effectively improve the diffusion rate of gas reactants to the catalyst wall, reduce the pressure drop and improve the catalytic conversion efficiencies of NH3 and NOx.


Sign in / Sign up

Export Citation Format

Share Document